Skip to main content
Log in

Geometric and dosimetric verification of a recurrent neural network algorithm to compensate for respiratory motion using an articulated robotic couch

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The purpose of this study is to evaluate the performance of a recurrent neural network (RNN)-based prediction algorithm to compensate for respiratory movement using an articulated robotic couch system. A prototype of a real-time respiratory motion compensation couch was built using an optical 3D motion tracking system and a six-degree-of-freedom-articulated robotic system. To compensate for the system latency from motion detection to re-positioning of the system, RNN and double exponential smoothing (ES2) prediction algorithms were applied. Three aspects of performance were evaluated, simulation and experiments for geometric and dosimetric evaluations, using data from three liver and three lung patients who underwent stereotactic body radiotherapy. Overall, the RNN algorithm showed better geometric and dosimetric results than the other approaches. In simulation tests, RNN showed 82% average improvement ratio, compared with non-predicted results. In the geometric evaluation, RNN only showed average FWHM broadening of 1.5 mm, compared with the static case. In the dosimetric evaluation, RNN showed average gamma passing rates of 97.4 ± 1.0%, 89.0 ± 2.4% under the 3%/3 mm, 2%/2 mm respectively. It may be technically feasible to use the RNN prediction algorithm to compensate for respiratory motion with an articulated robotic couch system. The RNN algorithm could be widely used for motion compensation in patients undergoing radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.J. Keall, G.S. Mageras, J.M. Balter, R.S. Emery, K.M. Forster et al., Med. Phys. 33, 3874 (2006)

    Article  Google Scholar 

  2. Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M.V. Herk et al., Int. J. Radiat. Oncol. Biol. Phys. 53(4), 822 (2002)

    Article  Google Scholar 

  3. B. Bussels, L. Goethals, M. Feron, D. Bielen, S. Dymarkowski et al., Radiother. Oncol. 68(1), 69 (2003)

    Article  Google Scholar 

  4. N. Kadoya, K. Ichiji, T. Uchida, Y. Nakajima, R. Ikeda et al., Med. Dosim. 43(1), 74 (2018)

    Article  Google Scholar 

  5. T. Depuydt, K. Poels, D. Verellen, B. Engels, C. Collen et al., Radiother. Oncol. 112(3), 343 (2014)

    Article  Google Scholar 

  6. J.J. Nuyttens, J.B. Prévost, J. Praag, M. Hoogeman, R.J.V. Klaveren et al., Acta Oncol. 45(7), 961 (2006)

    Article  Google Scholar 

  7. M. Lee, M.S. Cho, H. Lee, H. Chung, B. Cho, Prog. Med. Phys. 28(4), 171 (2017)

    Article  Google Scholar 

  8. E. Colvill, J. Booth, S. Nill, M. Fast, J. Bedford et al., Radiother. Oncol. 119(1), 159 (2016)

    Article  Google Scholar 

  9. M.J. Menten, M. Guckenberger, C. Herrmann, A. Krauß, S. Nill et al., Med. Phys. 39(11), 7032 (2012)

    Article  Google Scholar 

  10. D. Putra, O.C.L. Haas, J.A. Mills, K.J. Burnham, Phys. Med. Biol. 53(6), 1651 (2008)

    Article  Google Scholar 

  11. M.J. Murphy, D. Pokhrel, Med. Phys. 36(10), 40 (2008)

    Article  Google Scholar 

  12. F. Ernst, A. Schweikard, Int. J. CARS 3, 85 (2008)

    Article  Google Scholar 

  13. A.B. Mabrouk, N.B. Abdallah, Z. Dhifaoui, Appl. Math. Comput. 199, 334 (2008)

    MathSciNet  Google Scholar 

  14. F. Ernst, A. Schlaefer, A. Schweikard, Medical Image Computing and Computer-Assisted Intervention—MICCAI 2007, 4792, 668 (2007).

  15. N. Riaz, P. Shanker, R. Wiersma, O. Gudmundsson, W. Mao et al., Phys. Med. Biol. 54(19), 5735 (2009)

    Article  Google Scholar 

  16. W.Z. Sun, M.Y. Jiang, L. Ren, J. Dang, T. You et al., Phys. Med. Biol. 62(17), 6822 (2017)

    Article  Google Scholar 

  17. S.J. Lee, Y. Motai, M. Murphy, IEEE Trans. Ind. Electron. 59(11), 4421 (2012)

    Article  Google Scholar 

  18. S.L. Ho, M. Xie, T.N. Goh, Comput. Ind. Eng. 42, 371 (2002)

    Article  Google Scholar 

  19. A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke et al., IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855 (2009)

    Article  Google Scholar 

  20. I. Buzurovic, K. Huang, Y. Yu, T.K. Podder, Phys. Med. Biol. 56(5), 1299 (2011)

    Article  Google Scholar 

  21. W. Zaremba, I. Sutskever, O. Vinyals, arXiv preprint, arXiv: 1409.2329 (2014)

  22. M. Abadi, P. Barham J. Chen, Z. Chen, A. Davis, et al., in Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation (Savannah, GA, USA, November 2–4, 2016).

  23. D. P. Kingma, J. Ba, arXiv: 1412.6980 (2014).

  24. E.E. Klein, J. Hanley, J. Bayouth, F.F. Yin, W. Simon et al., Med. Phys. 36(9), 4197 (2009)

    Article  Google Scholar 

  25. B.P. Chugh, S. Quirk, L. Conroy, W.L. Smith, Med. Phys. 41(9), 091702–091711 (2014)

    Article  Google Scholar 

  26. D.P. Gierga, J. Brewer, G.C. Sharp, M. Betke, C.G. Willett et al., Int. J. Radiat. Oncol. Biol. Phys. 61(5), 1551 (2005)

    Article  Google Scholar 

  27. P.J. Keall, D.T. Nguyen, R. O’Brien, P. Zhang, L. Happersett et al., Int. J. Radiat. Oncol. Biol. Phys. 102(4), 922 (2018)

    Article  Google Scholar 

  28. B. Cho, P. Poulsen, D. Ruan, A. Sawant, P.J. Keall, Phys. Med. Biol. 57(22), 7395 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea Ministry of Science and ICT (2019R1F1A1046413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungchul Cho.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare relating to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Cho, MS., Lee, H. et al. Geometric and dosimetric verification of a recurrent neural network algorithm to compensate for respiratory motion using an articulated robotic couch. J. Korean Phys. Soc. 78, 64–72 (2021). https://doi.org/10.1007/s40042-020-00013-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00013-x

Keywords

Navigation