Skip to main content
Log in

Accelerated universe with a traversable wormhole from Visser's massive gravity

  • Letter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this letter, the Friedmann–Robertson–Walker model with a traversable wormhole is considered from the view point of Visser’s massive gravity theory. If the matter in the universe is assumed to be divided into two parts, the cosmic part, which depends on time only, and the wormhole part which depends on space only, a late-time acceleratedly expanding universe with a traversable wormhole and dominated by phantom energy is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Data availability statement

The author confirms the absence of shared data.

Notes

  1. We believe that in this letter, the entire derivation of the field equations need to be included; we refer readers may refer to Refs. [14,31,32] for the complete study.

  2. In a cosmological model, with a traversable wormhole [31], we need to take into account three main quantities: the total density \(\rho (r,t)\), the pressure \(P(r,t)\) is the pressure in the orthonormal frame, and the total surface tension \(Q(r,t)\). Because we are dealing with the isotropic case, one has \(P(r,t) = - Q(r,t)\), and all the previous physical quantities obey equations similar to Eq. (6).

References

  1. M.S. Morris, K.S. Thorne, U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1998)

    ADS  Google Scholar 

  2. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1998)

    ADS  Google Scholar 

  3. R. Garattini, Casimir wormholes. Eur. Phys. J. C 79, 951 (2019)

    ADS  Google Scholar 

  4. K. Jusufi, P. Channuie, M. Jamil, Eur. Phys. J. C 80, 127 (2020)

    ADS  Google Scholar 

  5. F.S.N. Lobo, M.A. Oliveira, Phys. Rev. D 80, 104012 (2009)

    ADS  MathSciNet  Google Scholar 

  6. K. Bronnikov, M. Skvortsova, A. Starobinsky, Gravit. Cosmol. 16, 216 (2010)

    ADS  MathSciNet  Google Scholar 

  7. C. de Rham, Liv. Rev. Relat. 17, 7 (2014)

    Google Scholar 

  8. S.L. Dubovsky, P.G. Tinyakov, I.I. Tkachev, Phys. Rev. Lett. 94, 181102 (2005)

    ADS  Google Scholar 

  9. M. Porrati, N.V. Dam-Veltman, Phys. Lett. B 498, 92 (2001)

    ADS  MathSciNet  Google Scholar 

  10. S. Dubovsky, R. Flauger, A. Starobinsky, I. Tkachev, Phys. Rev. D 81, 023523 (2010)

    ADS  Google Scholar 

  11. L.S. Finn, P.J. Sutton, Phys. Rev. D 65, 044022 (2002)

    ADS  Google Scholar 

  12. V. Cardoso, G. Castro, A. Maselli, Phys. Rev. Lett. 121, 251103 (2018)

    ADS  Google Scholar 

  13. C. de Rham, G. Gabadadze, A.J. Tolley, Phys. Rev. Lett. 106, 231101 (2011)

    ADS  Google Scholar 

  14. M. Visser, Gen. Relativ. Grav. 30, 1717 (1998)

    ADS  Google Scholar 

  15. T. Tangphati1, A. Chatrabhuti, D. Samart, P. Channuie, arXiv: 2003.01544.

  16. B.C. Paul, A.S. Majumdar, Class. Quantum Grav. 35, 065001 (2018)

    ADS  Google Scholar 

  17. A.R. Khabibullin, N.R. Khusnutdinov, S.V. Sushkov, Class. Quantum Grav. 23, 627 (2006)

    ADS  Google Scholar 

  18. K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012)

    ADS  Google Scholar 

  19. H.W. Lee, K.Y. Kim, Y.S. Myung, Mod. Phys. Lett. A 27, 1250146 (2012)

    ADS  Google Scholar 

  20. S. Basilakos, M. Plionis, M.E.S. Alves, J.A.S. Lima, Phys. Rev. D 83, 103506 (2011)

    ADS  Google Scholar 

  21. X.-Y. Hu, X.-X. Zeng, X.-M. Liu, Europ. Phys. J. C 73, 2451 (2013)

    ADS  Google Scholar 

  22. R.A. El-Nabulsi, Astrophys. Sp. Sci. 325, 277 (2010)

    ADS  Google Scholar 

  23. A. de Roany, B. Chauvineau, J.A. de Freitas Pacheco, Phys. Rev. D 84, 084043 (2011)

    ADS  Google Scholar 

  24. S. Deser, A. Waldron, Phys. Lett. B 508, 347 (2001)

    ADS  MathSciNet  Google Scholar 

  25. M. Novello, R.P. Neves, Class. Quantum Grav. 20, L67 (2003)

    ADS  Google Scholar 

  26. R.A. El-Nabulsi, Phys. Lett. B 619, 26 (2005)

    ADS  Google Scholar 

  27. R.A. El-Nabulsi, Chin. Phys. Lett. 23, 1124 (2006)

    Google Scholar 

  28. R. A. El-Nabulsi, Z. Naturforsch.A 73, 363 (2018).

  29. J.C.N. de Araujo, O.D. Miranda, Gen. Rel. Grav. 39, 777 (2007)

    ADS  Google Scholar 

  30. P.J. Sutton, L.S. Finn, Class. Quantum Grav. 19, 1355 (2002)

    ADS  Google Scholar 

  31. S.-W. Kim, Phys. Rev. D 53, 6889 (1996)

    ADS  Google Scholar 

  32. R.A. El-Nabulsi, Chin. Phys. Lett. 26, 090401 (2009)

    ADS  Google Scholar 

  33. R.A. El-Nabulsi, Astrophys. Sp. Sci. 326, 169 (2010)

    ADS  Google Scholar 

  34. R.A. El-Nabulsi, Braz. J. Phys. 39, 574 (2009)

    ADS  Google Scholar 

  35. M.E.S. Alves, O.D. Miranda, J.C.N. de Araujo, Gen. Rel. Grav. 40, 765 (2008)

    ADS  Google Scholar 

  36. R.A. El-Nabulsi, Can. J. Phys. 95, 605 (2017)

    ADS  Google Scholar 

  37. O. Hrycyna, M. Szydlowski, M. Kamionka, Phys. Rev. D 90, 124040 (2014)

    ADS  Google Scholar 

  38. A. Tripathi, A. Sangwan, H.K. Jassal, J. Cosmet. Astropart. Phys. 06, 012 (2017)

    ADS  Google Scholar 

  39. Z.-Y. Sun, Y.-G. Shen, Gen. Rel. Grav. 37, 243 (2005)

    ADS  Google Scholar 

  40. W.-F. Wang, Z.-W. Shui, B. Tang, Chin. Phys. B 19, 119801 (2010)

    ADS  Google Scholar 

  41. R.A. El-Nabulsi, J. Theoret. Appl. Phys. 7, 58 (2013)

    ADS  Google Scholar 

  42. R.A. El-Nabulsi, Chin. Phys. Lett. 25, 2785 (2008)

    ADS  Google Scholar 

  43. B. Pourhassan, Can. J. Phys. 94, 659 (2016)

    ADS  Google Scholar 

  44. R.A. El-Nabulsi, Gen. Relat. Gravit. 42, 1381 (2010)

    ADS  Google Scholar 

  45. I. Basaran Oz, Y. Kucukakca, N. Unal, Can. J. Phys. 96, 677 (2018)

    ADS  Google Scholar 

  46. R.A. El-Nabulsi, Eur. Phys. J. P. 130, 102 (2015)

    Google Scholar 

  47. R.A. El-Nabulsi, Astrophys. Sp. Sci. 327, 155 (2010)

    ADS  Google Scholar 

  48. M. Sami, A. Toporensky, Mod. Phys. Lett. A 19, 1509 (2004)

    ADS  Google Scholar 

  49. R.A. El-Nabulsi, Z. Naturforsch. 70, 101 (2015)

    ADS  Google Scholar 

  50. K. Karami, S. Ghaffari, J. Fehri, Europ. Phys. J. C 64, 85 (2009)

    ADS  Google Scholar 

  51. R.A. El-Nabulsi, Braz. J. Phys. 39, 107 (2009)

    ADS  Google Scholar 

  52. K. Karami, M. Jamil, S. Ghaffari, F. Fahimi, Can. J. Phys. 91, 770 (2013)

    ADS  Google Scholar 

  53. F.S.N. Lobo, F. Parsaei, N. Riazi, Phys. Rev. D 87, 084030 (2013)

    ADS  Google Scholar 

  54. F. Parsaei, S. Rastgoo, arXiv: 1909.09899.

  55. K.A. Bronnikov, A.M. Galiakhmetov, Gravit. Cosmet. 21, 283 (2015)

    ADS  Google Scholar 

  56. M. Hohmann, Phys. Rev. D 89, 087503 (2014)

    ADS  Google Scholar 

  57. M. Zubair, R. Saleem, Y. Ahmad, G. Abbas, Int. J. Geom. Meth. Mod. Phys. 16, 1950046 (2019)

    Google Scholar 

  58. R.-H. Lin, Z.-Y. Wu, X.-H. Zhai, arXiv: 1906.10323.

  59. S.A. Hayward, S.-W. Kim, H. Lee, J. Korean Phys. Soc. 42, 31 (2003)

    Google Scholar 

  60. H. Lee, W.-T. Kim, S.-W. Kim, J. Korean Phys. Soc. 44, 230 (2004)

    Google Scholar 

  61. M. Jamil, F. Rahaman, R. Myrzakulov, P.F.K. Kuhfittig, N. Ahmed, U.F. Mondal, J. Korean Phys. Soc. 65, 917 (2014)

    ADS  Google Scholar 

  62. Y. Kang, S.-W. Kim, J. Korean Phys. Soc. 73, 1800 (2018)

    ADS  Google Scholar 

  63. A. Eid, J. Korean Phys. Soc. 70, 436 (2017)

    ADS  Google Scholar 

  64. T.A. Chowdhury, R. Rahman, Z.A. Sabuj, Nucl. Phys. B 936, 364 (2018)

    ADS  Google Scholar 

  65. C. de Rham, G. Gabadadze, Phys. Rev. D 82, 044020 (2010)

    ADS  Google Scholar 

  66. S. Hassan, R.A. Rosen, J. High Energy. Phys. 1202, 126 (2012)

    ADS  Google Scholar 

  67. R.A. El-Nabulsi, Ind. J. Phys. 87, 465 (2013)

    Google Scholar 

  68. S. Carlip, S. Deser, A. Waldron, D.K. Wise, Class. Quantum Gravit. 26, 075008 (2009)

    ADS  Google Scholar 

  69. V.V. Dvoeglazov, Int. J. Theory Phys. 54, 761 (2015)

    Google Scholar 

  70. R.A. El-Nabulsi, Can. J. Phys. 98, 130 (2019)

    ADS  Google Scholar 

  71. R.A. El-Nabulsi, Chaos Solitons Fractals 42, 2614 (2009)

    ADS  MathSciNet  Google Scholar 

  72. N. Wu, Comm. Theor. Phys. 45, 452 (2006)

    ADS  Google Scholar 

  73. T. Rojjanason, P. Burikham, K. Pimsamarn, Eur. Phys. J. C 79, 660 (2019)

    ADS  Google Scholar 

  74. J. Gonzalez, J. Herrero, Nucl. Phys. B 825, 426 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for his useful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Accelerated universe with a traversable wormhole from Visser's massive gravity. J. Korean Phys. Soc. 78, 1–5 (2021). https://doi.org/10.1007/s40042-020-00011-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00011-z

Keywords

Navigation