Skip to main content
Log in

Spreading Speeds for Two Species Competition Systems in Time Almost Periodic and Space Periodic Media

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The current paper is devoted to the study of the spreading speeds of two species competition diffusion-advection systems in time almost periodic and space periodic media. We first show that there is a finite spreading speed interval for such diffusion-advection systems. The principal Lyapunov exponent and the principal Floquent bundle theory have been applied to study the spreading speed of time almost periodic and space periodic systems. Under some sufficient conditions, we prove that the spreading speed interval of such systems in any direction is a singleton in the partially spatially homogeneous case and the general case, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, X., Li, W.-T.: Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats. Nonlinear Anal., Real World Appl. 51, 102975 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Bao, X., Wang, Z.-C.: Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system. J. Differ. Equ. 255, 2402–2435 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Bao, X., Li, W.-T., Shen, W., Wang, Z.-C.: Spreading speeds and linear determinacy of time dependent diffusive cooperative/competitive systems. J. Differ. Equ. 265, 3048–3091 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Bao, X., Shen, W., Shen, Z.: Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Commun. Pure Appl. Anal. 18, 361–396 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Bao, X., Li, W.-T., Wang, Z.-C.: Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system. Commun. Pure Appl. Anal. 19, 253–277 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Besicovitch, A.S.: Almost Periodic Functions. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  8. Cao, F., Shen, W.: Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. Discrete Contin. Dyn. Syst. 37, 4697–4727 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Fang, J., Yu, X., Zhao, X.-Q.: Traveling waves and spreading speeds for time-space periodic monotone systems. J. Funct. Anal. 272, 4222–4262 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Fink, A.M.: Almost Periodic Differential Equations. Lecture Notes in Math., vol. 377. Springer, Berlin (1974)

    MATH  Google Scholar 

  11. Fischer, A.: Approximation of almost periodic functions by periodic ones. Czechoslov. Math. J. 48, 193–205 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  13. Guo, J.-S., Liang, X.: The minimal speed of traveling fronts for Lotka-Volterra competition system. J. Dyn. Differ. Equ. 23, 353–363 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Han, B.S., Wang, Z.C., Du, Z.: Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete Contin. Dyn. Syst., Ser. B 25, 1959–1983 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math., vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  16. Hosono, Y.: The minimal spread of traveling fronts for a diffusive Lotka-Volterra competition model. Bull. Math. Biol. 66, 435–448 (1998)

    MATH  Google Scholar 

  17. Huang, W.: Problem on minimum wave speed for a Lotka-Volterra reaction diffusion competition model. J. Dyn. Differ. Equ. 22, 285–297 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Huang, W., Han, M.: Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model. J. Differ. Equ. 251, 1549–1561 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Huang, J., Shen, W.: Speeds of spread and propagation for KPP models in time almost and space periodic media. SIAM J. Appl. Dyn. Syst. 8, 790–821 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Kan-on, Y.: Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. SIAM J. Math. Anal. 26, 340–363 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Kan-on, Y.: Fisher wave fronts for the Lotka-Volterra competition model with diffusion. Nonlinear Anal. 28, 145–164 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Kong, L., Rawal, N., Shen, W.: Spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in periodic habitats. Math. Model. Nat. Phenom. 10, 113–141 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Lewis, M., Weinberger, H., Li, B.: Spreading speed and linear determinacy for two species competition models. J. Math. Biol. 45, 219–233 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Li, B., Weinberger, H.F., Lewis, M.: Spreading speeds as slowest wave speeds for cooperative system. Math. Biosci. 196, 82–98 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Li, W.-T., Lin, G., Ruan, S.: Existence of traveling wave solutions in delayed reaction diffusion systems with applications to diffusion competition system. Nonlinearity 19, 1253–1273 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Lim, T., Zlatos, A.: Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion. Trans. Am. Math. Soc. 368, 8615–8631 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Lui, R.: Biological growth and spread modeled by system of recursions. I. Mathematical theory. Math. Biosci. 93, 269–295 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Mierczyński, J., Shen, W.: Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations. J. Differ. Equ. 191, 175–205 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Nadin, G., Rossi, L.: Propagation phenomena for time heterogeneous KPP reaction-diffusion equations. J. Math. Pures Appl. 98, 633–653 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Nadin, G., Rossi, L.: Transition waves for Fisher-KPP equations with general time-heterogeneous and space-periodic coefficients. Anal. PDE 8, 1351–1377 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Nolen, J., Xin, J.: Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete Contin. Dyn. Syst. 13, 1217–1234 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Nolen, J., Rudd, M., Xin, J.: Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds. Dyn. Partial Differ. Equ. 2, 1–24 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Poláčik, P., Jereščák, I.: Exponential separation and invariant bundles for maps in ordered Banaches space with applications to parabolic equation. J. Dyn. Differ. Equ. 5(2), 279–303 (1993)

    Google Scholar 

  36. Rossi, L., Ryzhik, L.: Transition waves for a class of space-time dependent monostable equations. Commun. Math. Sci. 12, 879–900 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Sell, G.R.: Topological Dynamics and Ordinary Differential Equations. Van Nostrand Reinhold Company, New York (1971)

    MATH  Google Scholar 

  38. Shen, W.: Traveling waves in diffusive random media. J. Dyn. Differ. Equ. 16, 1011–1060 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Shen, W.: Spreading and generalized propagating speeds of discrete KPP models in time varying environments. Front. Math. China 4, 523–562 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Shen, W.: Variational principle for spatial spreading speed and generalized wave solutions in time almost periodic and space periodic KPP model. Trans. Am. Math. Soc. 362, 5125–5168 (2010)

    MATH  Google Scholar 

  41. Shen, W.: Existence of generalized traveling wave in time recurrent and space periodic monostable equations. J. Appl. Anal. Comput. 1, 69–93 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Shen, W.: Existence, uniqueness, and stability of generalized traveling waves in time dependent of monostable equations. J. Dyn. Differ. Equ. 23, 1–44 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Shen, W.: Stability of transition waves and positive entire solutions of Fisher-KPP equations with time and space dependence. Nonlinearity 30(9), 3466–3491 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Tao, T., Zhu, B., Zlatos, A.: Transition fronts for inhomogeneous monostable reaction diffusion equations via linearization at zero. Nonlinearity 12 (2014). https://doi.org/10.1088/0951-7715/27/9/2409

  45. Weinberger, H.F., Lewis, M., Li, B.: Analysis of linear determinacy for speed in cooperative models. J. Math. Biol. 45, 183–218 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Yi, Y.: Almost automorphic and almost periodic dynamics in skew-product semiflows, Part I. Almost automorphy and almost periodicity. Mem. Am. Math. Soc. 136(647) (1998). https://doi.org/10.1090/memo/0647

  47. Yu, X., Zhao, X.-Q.: Propagation phenomena for a reaction advection diffusion competition model in a periodic habitat. J. Dyn. Differ. Equ. 29(1), 41–66 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, L., Li, W.T., Wang, Z.C., Sun, Y.J.: Entire solutions for nonlocal dispersal equations with bistable nonlinearity: asymmetric case. Acta Math. Sin. Engl. Ser. 35, 1771–1794 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Zhao, G., Ruan, S.: Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion. J. Math. Pures Appl. 95, 627–671 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Zhao, G., Ruan, S.: Time periodic traveling wave solutions for periodic advection reaction diffusion systems. J. Differ. Equ. 257, 1078–1147 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for valuable comments and suggestions which improved the presentation of this manuscript. Xiongxiong Bao was partially supported by NSF of China (11701041), Natural Science Basic Research Plan in Shaanxi Province of China (2020JM-223) and the Fundamental Research Funds for the Central Universities (300102129201), CHD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongxiong Bao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X. Spreading Speeds for Two Species Competition Systems in Time Almost Periodic and Space Periodic Media. Acta Appl Math 171, 11 (2021). https://doi.org/10.1007/s10440-020-00376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-020-00376-0

Keywords

Mathematics Subject Classification (2000)

Navigation