Skip to main content
Log in

Keller-Segel Chemotaxis Models: A Review

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We recount and discuss some of the most important methods and blow-up criteria for analyzing solutions of Keller-Segel chemotaxis models. First, we discuss the results concerning the global existence, boundedness and blow-up of solutions to parabolic-elliptic type models. Thereafter we describe the global existence, boundedness and blow-up of solutions to parabolic-parabolic models. The numerical analysis of these models is still at a rather early stage only. We recollect quite a few of the known results on numerical methods also and direct the attention to a number of open problems in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, J.: Chemotaxis in bacteria. Annu. Rev. Biochem. 44, 341–356 (1975)

    Google Scholar 

  2. Ahn, J., Kang, K., Lee, J.: Eventual smoothness and stabilization of global weak solutions in parabolic-elliptic chemotaxis systems with logarithmic sensitivity. Nonlinear Anal. 49, 312–330 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Akilandeeswari, A., Tyagi, J., Nonnegative solutions to time fractional Keller-Segel system. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6880

    Article  Google Scholar 

  4. Akhmouch, M., Amine, M.B.: Semi-implicit finite volume schemes for a chemotaxis-growth model. Indag. Math. 27, 702–720 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235, 4015–4031 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Arumugam, G., Erhardt, A.H., Eswaramoorthy, I., Krishnan, B.: Existence of weak solutions to the Keller-Segel chemotaxis system with additional cross-diffusion. Nonlinear Anal., Real World Appl. 54, 103090 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Bedrossian, J.: Large mass global solutions for a class of \(L^{1}\)-critical nonlocal aggregation equations and parabolic-elliptic Patlak-Keller-Segel models. Commun. Partial Differ. Equ. 40, 1119–1136 (2015)

    MATH  Google Scholar 

  8. Bellomo, N., Winkler, M.: Finite-time blow-up in a degenerate chemotaxis system with flux limitation. Trans. Am. Math. Soc. Ser. B 4, 31–67 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Bellomo, N., Winkler, M.: A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up. Commun. Partial Differ. Equ. 42, 436–473 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Bhuvaneswari, V., Shangerganesh, L., Balachandran, K.: Global existence and blow up of solutions of quasilinear chemotaxis system. Math. Methods Appl. Sci. 38, 3738–3746 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Biler, P.: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9, 347–359 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Biler, P., Woyczynski, W.A.: Global and exploding solutions for nonlocal quadratic evolution problems. SIAM J. Appl. Math. 59, 845–869 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Biler, P., Zienkiewicz, J.: Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data. Bull. Pol. Acad. Sci., Math. 63, 41–51 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Biler, P., Zienkiewicz, J.: Blowing up radial solutions in the minimal Keller-Segel model of chemotaxis. J. Evol. Equ. 19, 71–90 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Biler, P., Karch, G., Pilarczyk, D.: Global radial solutions in classical Keller-Segel chemotaxis model. J. Differ. Equ. 267, 6352–6369 (2019)

    MATH  Google Scholar 

  17. Black, T.: Boundedness in a Keller-Segel system with external signal production. J. Math. Anal. Appl. 446, 436–455 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Black, T., Lankeit, J., Mizukami, M.: A Keller-Segel-fluid system with singular sensitivity: generalized solutions. Math. Methods Appl. Sci. 42, 3002–3020 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 2006, 44 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Blanchet, A., Calvez, V., Carrillo, J.A.: Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46, 691–721 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Blanchet, A., Carrillo, J.A., Laurençot, P.: Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. 35, 33–168 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Bonner, J.T.: The Cellular Slime Molds, 2nd edn. Princeton University Press, Princeton (1967)

    Google Scholar 

  23. Boon, J.P., Herpigny, B.: Model for chemotactic bacterial bands. Bull. Math. Biol. 48, 1–19 (1986)

    MATH  Google Scholar 

  24. Braess, D.: Finite Elements, Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  25. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

    MATH  Google Scholar 

  26. Budd, C., González, R.C., Russell, R.: Precise computations of chemotactic collapse using moving mesh methods. J. Comput. Phys. 202, 463–487 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Burgerand, M., Carrillo, J.A., Wolfram, T.: A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models 3, 59–83 (2010)

    MathSciNet  Google Scholar 

  28. Calvez, V., Carrillo, J.A.: Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. 86, 155–175 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Calvez, V., Corrias, L.: The parabolic-parabolic Keller-Segel model in \(\mathbb{R}^{2}\). Commun. Math. Sci. 6, 417–447 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Carrillo, J.A., Hittmeir, S., Jüngel, A.: Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model. Math. Models Methods Appl. Sci. 22, 1250041 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Chatard, M.B., Jüngel, A.: A finite volume scheme for a Keller-Segel model with additional cross-diffusion. IMA J. Numer. Anal. 34, 96–122 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Chavanis, P-H.: A stochastic Keller-Segel model of chemotaxis. Commun. Nonlinear Sci. Numer. Simul. 15, 60–70 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Chen, Z.: Finite Element Methods and Their Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  34. Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Chertock, A., Epshteyn, Y., Hu, H., Kurganov, A.: High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems. Adv. Comput. Math. 44, 327–350 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Childress, S., Percus, J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    MathSciNet  MATH  Google Scholar 

  37. Chiyoda, Y., Mizukami, M., Yokota, T.: Finite-time blow-up in a quasilinear degenerate chemotaxis system with flux limitation. Acta Appl. Math. (2019). https://doi.org/10.1007/s10440-019-00275-z

    Article  MATH  Google Scholar 

  38. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1988)

    Google Scholar 

  39. Ciélak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Cieslak, T., Winkler, M.: Global bounded solutions in a two-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal., Real World Appl. 35, 1–19 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Cong, W., Liu, J-G.: A degenerate \(p-\) Laplacian Keller-Segel model. Kinet. Relat. Models 9, 687–714 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Corrias, L., Escobedo, M., Matos, J.: Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane. J. Differ. Equ. 257, 1840–1878 (2014)

    MathSciNet  MATH  Google Scholar 

  44. DiPietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin (2012)

    Google Scholar 

  45. Eisenbach, M.: Chemotaxis. Imperial College Press, London (2004)

    Google Scholar 

  46. Epshteyn, Y.: Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model. Numer. Math. 111, 169–205 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Epshteyn, Y.: Discontinuous Galerkin methods for the chemotaxis and haptotaxis models. J. Comput. Appl. Math. 224, 168–181 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model. J. Sci. Comput. 40, 211–256 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. SIAM J. Numer. Anal. 47, 386–408 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Epshteyn, Y., Xia, Q.: Efficient numerical algorithms based on difference potentials for chemotaxis systems in 3D. J. Sci. Comput. 80, 26–59 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Espejo, E., Winkler, M.: Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization. Nonlinearity 31, 1227–1259 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Filbet, F.: A finite volume scheme for the Patlak-Keller-Segel chemotaxis model. Numer. Math. 104, 457–488 (2006)

    MathSciNet  MATH  Google Scholar 

  53. Freitag, M.: Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete Contin. Dyn. Syst. 38, 5943–5961 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Fuest, M.: Finite-time blow-up in a two-dimensional Keller-Segel system with an environmental dependent logistic source. Nonlinear Anal., Real World Appl. 52, 103022 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Fuest, M.: Blow-up profiles in quasilinear fully parabolic Keller-Segel systems. Nonlinearity 33, 2306–2334 (2020)

    MathSciNet  Google Scholar 

  56. Fujie, K.: Boundedness in a fully parabolic-chemotaxis system singular sensitivity. J. Math. Anal. Appl. 424, 675–684 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Fujie, K.: Study of Reaction-Diffusion Systems Modeling Chemotaxis. Doctoral thesis (2016)

  58. Fujie, K., Yokota, T.: Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity. Appl. Math. Lett. 38, 140–143 (2014)

    MathSciNet  MATH  Google Scholar 

  59. Fujie, K., Winkler, M., Yokota, T.: Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity. Nonlinear Anal. 109, 56–71 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Fujie, K., Winkler, M., Yokota, T.: Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity. Math. Models Methods Appl. Sci. 38, 1212–1224 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Galakhov, E., Salieva, O., Tello, J.I.: On a parabolic-elliptic system with chemotaxis and logistic type growth. J. Differ. Equ. 261, 4631–4647 (2016)

    MathSciNet  MATH  Google Scholar 

  62. Ganesan, S., Tobiska, L.: Finite Elements: Theory and Algorithms. Cambridge-IISc Series. Cambridge University Press, Cambridge (2017). ISBN 9781108344159

    MATH  Google Scholar 

  63. Gao, H., Fu, S., Mohammed, H.: Existence of global solution to a two-species Keller-Segel chemotaxis model. Int. J. Biomath. 11, 1850036 (2018)

    MathSciNet  MATH  Google Scholar 

  64. Godlewski, E., Raviart, P-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996)

    MATH  Google Scholar 

  65. Guo, L., Li, X.H., Yang, Y.: Energy dissipative local discontinuous Galerkin methods for Keller-Segel chemotaxis model. J. Sci. Comput. 78, 1387–1404 (2019)

    MathSciNet  MATH  Google Scholar 

  66. Gurusamy, A., Balachandran, K.: Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion. Int. J. Dyn. Control 6, 539–549 (2018)

    MathSciNet  Google Scholar 

  67. Hashira, T., Ishida, S., Yokota, T.: Finite time blow- up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. J. Differ. Equ. 264, 6459–6485 (2018)

    MathSciNet  MATH  Google Scholar 

  68. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms: Analysis, and Applications. Springer, New York (2008)

    MATH  Google Scholar 

  69. Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280–301 (2001)

    MathSciNet  MATH  Google Scholar 

  70. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    MathSciNet  MATH  Google Scholar 

  71. Hittmeir, S., Jungel, A.: Cross diffusion preventing blow-up in the two-dimensional Keller-Segel model. SIAM J. Math. Anal. 43, 997–1022 (2011)

    MathSciNet  MATH  Google Scholar 

  72. Horstmann, D.: The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent results. Nonlinear Differ. Equ. Appl. 8, 399–423 (2001)

    MathSciNet  MATH  Google Scholar 

  73. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresber. Dtsch. Math.-Ver. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  74. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    MathSciNet  MATH  Google Scholar 

  75. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  76. Horstmann, D., Meinlschmidt, H., Rehberg, J.: The full Keller-Segel model is well-posed on nonsmooth domains. Nonlinearity 31, 1560–1592 (2018)

    MathSciNet  MATH  Google Scholar 

  77. Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data. J. Differ. Equ. 252, 2469–2491 (2012)

    MathSciNet  MATH  Google Scholar 

  78. Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. J. Differ. Equ. 252, 1421–1440 (2012)

    MathSciNet  MATH  Google Scholar 

  79. Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete Contin. Dyn. Syst., Ser. B 18, 2569–2596 (2013)

    MathSciNet  MATH  Google Scholar 

  80. Ishida, S., Ono, T., Tokota, T.: Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Math. Methods Appl. Sci. 36, 745–760 (2013)

    MathSciNet  MATH  Google Scholar 

  81. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    MathSciNet  MATH  Google Scholar 

  82. Jiang, J., Wu, H., Zheng, S.: Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant. J. Differ. Equ. 264, 5432–5464 (2018)

    MathSciNet  MATH  Google Scholar 

  83. Jin, H.Y., Kim, Y.J., Wang, Z.A.: Boundedness, stabilization and pattern formation driven by density-suppressed motility. SIAM J. Appl. Math. 78, 1632–1657 (2018)

    MathSciNet  MATH  Google Scholar 

  84. Jüngel, A., Leingang, O., Wang, S.: Vanishing cross-diffusion limit in a Keller-Segel system with additional cross-diffusion. Nonlinear Anal. 192, 111698 (2020)

    MathSciNet  MATH  Google Scholar 

  85. Kang, K., Kim, K., Yoon, C.: Existence of weak and regular solutions for Keller-Segel system with degradation coupled to fluid equations. J. Math. Anal. Appl. 485, 123750 (2020)

    MathSciNet  MATH  Google Scholar 

  86. Keller, E.F., Segel, L.A.: Initiation of some mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MATH  Google Scholar 

  87. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 377–380 (1971)

    MATH  Google Scholar 

  88. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    MATH  Google Scholar 

  89. Kowalczyk, R., Szymanska, Z.: On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 343, 379–398 (2008)

    MathSciNet  MATH  Google Scholar 

  90. Kozono, H., Sugiyama, Y.: The Keller-Segel system of parabolic-parabolic type with initial data in weak \(L^{n/2}(\mathbb{R}^{n})\) and its application to self-similar solutions. Indiana Univ. Math. J. 57, 1467–1500 (2008)

    MathSciNet  MATH  Google Scholar 

  91. Kozono, H., Sugiyama, Y.: Global strong solution to the semi-linear Keller-Segel system of parabolic-parabolic type with small data in scale invariant spaces. J. Differ. Equ. 247, 1–32 (2009)

    MathSciNet  MATH  Google Scholar 

  92. Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid. J. Funct. Anal. 270, 1663–1683 (2016)

    MathSciNet  MATH  Google Scholar 

  93. Lai, Y., Xiao, Y.: Existence and asymptotic behavior of global solutions to chemorepulsion systems with nonlinear sensitivity. Electron. J. Differ. Equ., 254 (2017)

  94. Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258, 1158–1191 (2015)

    MathSciNet  MATH  Google Scholar 

  95. Lankeit, J.: New approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 39, 394–404 (2016)

    MathSciNet  MATH  Google Scholar 

  96. Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differ. Equ. 262, 4052–4084 (2017)

    MathSciNet  MATH  Google Scholar 

  97. Lankeit, E., Lankeit, J.: On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms. Nonlinearity 32, 1569–1596 (2019)

    MathSciNet  MATH  Google Scholar 

  98. Lankeit, E., Lankeit, J.: Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption. Nonlinear Anal., Real World Appl. 46, 421–445 (2019)

    MathSciNet  MATH  Google Scholar 

  99. Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data. Nonlinear Differ. Equ. Appl. 24, 24–49 (2017)

    MathSciNet  MATH  Google Scholar 

  100. Lankeit, J., Winkler, M.: Facing low regularity in chemotaxis systems. Jahresber. Dtsch. Math.-Ver. 122, 35–64 (2020)

    MathSciNet  MATH  Google Scholar 

  101. Laurençot, P., Mizoguchi, N.: Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion. Ann. Inst. Henri Poincaré A, Phys. Théor. 34, 197–220 (2017)

    MathSciNet  MATH  Google Scholar 

  102. Li, X.: On a fully parabolic chemotaxis system with nonlinear signal secretion. Nonlinear Anal., Real World Appl. 49, 24–44 (2019)

    MathSciNet  MATH  Google Scholar 

  103. Li, X.: Global classical solutions in a Keller-Segel(-Navier)-Stokes system modeling coral fertilization. J. Differ. Equ. 267, 6290–6315 (2019)

    MathSciNet  MATH  Google Scholar 

  104. Li, Y.: Finite-time blow-up in quasilinear parabolic-elliptic chemotaxis system with nonlinear signal production. J. Math. Anal. Appl. 480(1), 123376 (2019)

    MathSciNet  MATH  Google Scholar 

  105. Li, Y.: On a Keller-Segel-Stokes system with logistic type growth: blow-up prevention enforced by sublinear signal production. Z. Angew. Math. Phys. 70, 157 (2019)

    MathSciNet  MATH  Google Scholar 

  106. Li, H., Zhao, K.: Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. J. Differ. Equ. 258, 302–308 (2015)

    MathSciNet  MATH  Google Scholar 

  107. Li, D., Li, T., Zhao, K.: On a hyperbolic-parabolic system modeling chemotaxis. Math. Models Methods Appl. Sci. 21, 1631–1650 (2011)

    MathSciNet  MATH  Google Scholar 

  108. Li, X.H., Shu, C.-W., Yang, Y.: Local discontinuous Galerkin method for the Keller-Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)

    MathSciNet  MATH  Google Scholar 

  109. Lina, K., Mub, C., Zhong, H.: A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions. J. Math. Anal. Appl. 464, 435–455 (2018)

    MathSciNet  Google Scholar 

  110. Liu, J-G., Wang, J.: A note on \(L^{\infty }\)-bound and uniqueness to a degenerate Keller-Segel model. Acta Appl. Math. 142, 173–188 (2016)

    MathSciNet  MATH  Google Scholar 

  111. Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. Modél. Math. Anal. Numér. 4, 617–630 (2003)

    MathSciNet  MATH  Google Scholar 

  112. Mimura, Y.: The variational formulation of the fully parabolic Keller-Segel system with degenerate diffusion. J. Differ. Equ. 263, 1477–1521 (2017)

    MathSciNet  MATH  Google Scholar 

  113. Mizoguchi, N.: Type II blowup in the doubly parabolic Keller-Segel system in the two dimension. J. Funct. Anal. 271, 3323–3347 (2016)

    MathSciNet  MATH  Google Scholar 

  114. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann. Inst. Henri Poincaré A, Phys. Théor. 31, 851–875 (2014)

    MathSciNet  MATH  Google Scholar 

  115. Mizukami, M.: Determination of blowup type in the parabolic-parabolic Keller-Segel system. Math. Ann. 376, 39–60 (2020)

    MathSciNet  Google Scholar 

  116. Mizukami, M., Yokota, T.: A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity. Math. Nachr. 290, 1–13 (2017)

    MathSciNet  MATH  Google Scholar 

  117. Mizukami, M., Ono, T., Yokota, T.: Extensibility criterion ruling out gradient blow-up in a quasilinear degenerate chemotaxis system. Preprint. arXiv:1903.00124

  118. Mu, C., Wang, L., Zheng, P., Zhang, Q.: Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system. Nonlinear Anal., Real World Appl. 14, 1634–1642 (2013)

    MathSciNet  MATH  Google Scholar 

  119. Murray, J.D.: Mathematical Biology II. Spatial Models and Biomedical Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  120. Nagai, T.: Global existence of solutions to a parabolic system for chemotaxis in two space dimensions. Nonlinear Anal., Theory Methods Appl. 30, 5381–5388 (1997)

    MathSciNet  MATH  Google Scholar 

  121. Nagai, T.: Global existence and blow-up of solutions to a chemotaxis system. Nonlinear Anal. 47, 777–787 (2001)

    MathSciNet  MATH  Google Scholar 

  122. Nakaguchi, E., Yagi, Y.: Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems. Hokkaido Math. J. 31, 385–429 (2002)

    MathSciNet  MATH  Google Scholar 

  123. Nanjundiah, V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

    Google Scholar 

  124. Nasreddine, E.: Global existence of solutions to a parabolic-elliptic chemotaxis system with critical degenerate diffusion. J. Math. Anal. Appl. 417, 144–163 (2014)

    MathSciNet  MATH  Google Scholar 

  125. Negreanu, M., Tello, J.I.: On a parabolic-elliptic system with gradient dependent chemotactic coefficient. J. Differ. Equ. 265, 733–751 (2018)

    MathSciNet  MATH  Google Scholar 

  126. Negreanu, M., Tello, J.I.: Global existence and asymptotic behavior of solutions to a Predator-Prey chemotaxis system with two chemicals. J. Math. Anal. Appl. 474, 1116–1131 (2019)

    MathSciNet  MATH  Google Scholar 

  127. Painter, K.J.: Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2019)

    MathSciNet  MATH  Google Scholar 

  128. Painter, K., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2001)

    MathSciNet  MATH  Google Scholar 

  129. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    MathSciNet  MATH  Google Scholar 

  130. Payne, L.E., Song, J.C.: Blow-up and decay criteria for a model of chemotaxis. J. Math. Anal. Appl. 367, 1–6 (2010)

    MathSciNet  MATH  Google Scholar 

  131. Payne, L.E., Song, J.C.: Lower bounds for blow-up in a model of chemotaxis. J. Math. Anal. Appl. 385, 672–676 (2012)

    MathSciNet  MATH  Google Scholar 

  132. Payne, L.E., Straughan, B.: Decay for a Keller-Segel chemotaxis model. Stud. Appl. Math. 123, 337–360 (2009)

    MathSciNet  MATH  Google Scholar 

  133. Prudhomme, S., Pascal, F., Oden, J.T., Romkes, A.: Review of a priori error estimation for discontinuous Galerkin Methods. Technical report, TICAM Report 00-27, Texas Institute for Computational and Applied Mathematics, Austin, TX (2000)

  134. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  135. Saito, N.: Conservative upwind finite element method for a simplified Keller-Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)

    MathSciNet  MATH  Google Scholar 

  136. Saito, N.: Conservative numerical schemes for the Keller-Segel system and numerical results. RIMS Kôkyûroku Bessatsu 15, 125–146 (2009)

    MathSciNet  MATH  Google Scholar 

  137. Saito, N.: Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Commun. Pure Appl. Anal. 11, 339–364 (2012)

    MathSciNet  MATH  Google Scholar 

  138. Saito, N., Suzuki, T.: Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis. Appl. Math. Comput. 171, 72–90 (2005)

    MathSciNet  MATH  Google Scholar 

  139. Salako, R.B., Shen, W.: Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on \(\mathbb{R}^{N}\). J. Differ. Equ. 262, 5635–5690 (2017)

    MATH  Google Scholar 

  140. Salako, R.B., Shen, W.: Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on \(\mathbb{R}^{N}\). I. Persistence and asymptotic spreading. Math. Models Methods Appl. Sci. 28, 2237–2273 (2018)

    MathSciNet  MATH  Google Scholar 

  141. Salako, R.B., Shen, W.: Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on \(\mathbb{R}^{N}\). II. Existence, uniqueness, and stability of strictly positive entire solutions. J. Math. Anal. Appl. 464, 883–910 (2018)

    MathSciNet  MATH  Google Scholar 

  142. Salako, R.B., Shen, W.: Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on \(\mathbb{R}^{N}\) III. Transition fronts (2018)

  143. Senba, T., Suzuki, T.: Parabolic system of chemotaxis: blow-up in a finite and the infinite time. Math. Methods Appl. Sci. 8, 349–367 (2001)

    MATH  Google Scholar 

  144. Shangerganesh, L., Barani Balan, N., Balachandran, K.: Existence and uniqueness of solutions of degenerate chemotaxis system. Taiwan. J. Math. 18, 1605–1622 (2014)

    MathSciNet  MATH  Google Scholar 

  145. Souplet, P., Winkler, M.: Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions \(n\geqslant 3\). Commun. Math. Phys. 367, 665–681 (2019)

    MATH  Google Scholar 

  146. Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal., Real World Appl. 12, 3727–3740 (2011)

    MathSciNet  MATH  Google Scholar 

  147. Strehl, R., Sokolov, A., Turek, S.: Efficient, accurate and flexible finite element solvers for chemotaxis problems. Comput. Math. Appl. 64, 175–189 (2012)

    MathSciNet  MATH  Google Scholar 

  148. Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)

    MathSciNet  MATH  Google Scholar 

  149. Sugiyama, Y.: Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis. Nonlinear Anal. 63, 1051–1062 (2005)

    MATH  Google Scholar 

  150. Sugiyama, Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel system. Differ. Integral Equ. 19, 841–876 (2006)

    MathSciNet  MATH  Google Scholar 

  151. Sugiyama, Y.: Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis. Differ. Integral Equ. 20, 133–180 (2007)

    MathSciNet  MATH  Google Scholar 

  152. Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Differ. Equ. 227, 333–364 (2006)

    MathSciNet  MATH  Google Scholar 

  153. Sugiyama, Y., Tsutsui, Y., Velázquez, J.J.L.: Global solutions to a chemotaxis system with non-diffusive memory. J. Math. Anal. Appl. 410, 908–917 (2014)

    MathSciNet  MATH  Google Scholar 

  154. Tan, Z., Zhou, J.: Global existence and time decay estimate of solutions to the Keller-Segel system. Math. Methods Appl. Sci. 42, 375–402 (2019)

    MathSciNet  MATH  Google Scholar 

  155. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    MathSciNet  MATH  Google Scholar 

  156. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    MathSciNet  MATH  Google Scholar 

  157. Tao, Y., Winkler, M.: Effects of signal-dependent motilities in a Keller-Segel type reaction-diffusion system. Math. Methods Appl. Sci. 27, 1645–1683 (2017)

    MathSciNet  MATH  Google Scholar 

  158. Tao, Y., Winkler, M.: Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system. Math. Models Methods Appl. Sci. 27, 1645–1683 (2017)

    MathSciNet  MATH  Google Scholar 

  159. Tao, Y., Winkler, M.: Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension. J. Differ. Equ. 267, 388–406 (2019)

    MathSciNet  MATH  Google Scholar 

  160. Tao, Y., Wang, L.H., Wang, Z.A.: Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete Contin. Dyn. Syst., Ser. B 18, 821–845 (2013)

    MathSciNet  MATH  Google Scholar 

  161. Tao, X., Zhou, S., Ding, M.: Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production. J. Math. Anal. Appl. 474, 733–747 (2019)

    MathSciNet  MATH  Google Scholar 

  162. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    MathSciNet  MATH  Google Scholar 

  163. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  164. Viglialoro, G.: Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source. J. Math. Anal. Appl. 439, 197–212 (2016)

    MathSciNet  MATH  Google Scholar 

  165. Viglialoro, G., Woolley, T.E.: Solvability of a Keller-Segel system with signal-dependent sensitivity and essentially sublinear production. Appl. Anal. 99(14), 2507–2525 (2019).

    MathSciNet  MATH  Google Scholar 

  166. Wang, Y.: Global bounded weak solutions to a degenerate quasilinear chemotaxis system with rotation. Math. Methods Appl. Sci. 39, 1159–1175 (2016)

    MathSciNet  MATH  Google Scholar 

  167. Wang, J., Wang, M.: Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth. J. Math. Phys. 60, 011507 (2019)

    MathSciNet  MATH  Google Scholar 

  168. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    MathSciNet  MATH  Google Scholar 

  169. Wang, L., Li, Y., Mu, C.: Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 34, 789–802 (2014)

    MathSciNet  MATH  Google Scholar 

  170. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa, Cl. Sci. XVIII, 421–466 (2018)

    MathSciNet  MATH  Google Scholar 

  171. Wang, J., Li, Y., Chen, L.: Supercritical degenerate parabolic-parabolic Keller-Segel system: existence criterion given by the best constant in Sobolev’s inequality. Z. Angew. Math. Phys. 70, 71 (2019)

    MathSciNet  MATH  Google Scholar 

  172. Wang, Y., Winkler, M., Xiang, Z.: The fast signal diffusion limit in Keller-Segel(-fluid) systems. Calc. Var. 58, 196 (2019)

    MathSciNet  MATH  Google Scholar 

  173. Winkler, M.: Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348, 708–729 (2008)

    MathSciNet  MATH  Google Scholar 

  174. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  175. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176–190 (2010)

    MathSciNet  MATH  Google Scholar 

  176. Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    MathSciNet  MATH  Google Scholar 

  177. Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal- dependent sensitivity. Math. Nachr. 283, 1664–1673 (2010)

    MathSciNet  MATH  Google Scholar 

  178. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176–190 (2011)

    MathSciNet  MATH  Google Scholar 

  179. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  180. Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  181. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. 54, 3789–3828 (2015)

    MathSciNet  MATH  Google Scholar 

  182. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? J. Funct. Anal. 270, 1663–1683 (2016)

    MathSciNet  Google Scholar 

  183. Winkler, M.: The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties. Math. Models Methods Appl. Sci. 26, 987–1024 (2016)

    MathSciNet  MATH  Google Scholar 

  184. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann. Inst. Henri Poincaré 33, 1329–1352 (2016)

    MathSciNet  MATH  Google Scholar 

  185. Winkler, M.: Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete Contin. Dyn. Syst., Ser. B 22, 2777–2793 (2017)

    MathSciNet  MATH  Google Scholar 

  186. Winkler, M.: Renormalized radial large-data solutions to the higher-dimensional Keller-Segel system with singular sensitivity and signal absorption. J. Differ. Equ. 264, 2310–2350 (2018)

    MathSciNet  MATH  Google Scholar 

  187. Winkler, M.: Does fluid interaction affect regularity in the three-dimensional Keller-Segel system with saturated sensitivity? J. Math. Fluid Mech. 20, 1889–1909 (2018)

    MathSciNet  MATH  Google Scholar 

  188. Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69, 40 (2018). https://doi.org/10.1007/s00033-018-0935-8

    Article  MathSciNet  MATH  Google Scholar 

  189. Winkler, M.: Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components. J. Evol. Equ. 18, 1267–1289 (2018)

    MathSciNet  MATH  Google Scholar 

  190. Winkler, M.: Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation. Ann. Inst. Henri Poincaré 36, 1747–1790 (2019)

    MathSciNet  MATH  Google Scholar 

  191. Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities. J. Differ. Equ. 266, 8034–8066 (2019)

    MathSciNet  MATH  Google Scholar 

  192. Winkler, M.: Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems? Int. Math. Res. Not. (2019). https://doi.org/10.1093/imrn/rnz056

    Article  Google Scholar 

  193. Winkler, M.: How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two-and higher-dimensional parabolic-elliptic cases. Math. Ann. 373, 1237–1282 (2019)

    MathSciNet  MATH  Google Scholar 

  194. Winkler, M.: Does repulsion-type directional preference in chemotactic migration continue to regularize Keller-Segel systems when coupled to the Navier-Stokes equations? Nonlinear Differ. Equ. Appl. 26, 48 (2019)

    MathSciNet  MATH  Google Scholar 

  195. Winkler, M.: Instantaneous regularization of distributions from \((C^{0})^{*} \times L^{2}\) in the one-dimensional parabolic Keller-Segel system. Nonlinear Anal. 183, 102–116 (2019)

    MathSciNet  MATH  Google Scholar 

  196. Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276, 1339–1401 (2019)

    MathSciNet  MATH  Google Scholar 

  197. Winkler, M.: Does repulsion-type directional preference in chemotactic migration continue to regularize Keller-Segel systems when coupled to the Navier-Stokes equations? Nonlinear Differ. Equ. Appl. 26, 48 (2019)

    MathSciNet  MATH  Google Scholar 

  198. Winkler, M.: Boundedness in a two-dimensional Keller-Segel-Navier-Stokes system involving a rapidly diffusing repulsive signal. Z. Angew. Math. Phys. 71, 10 (2020)

    MathSciNet  MATH  Google Scholar 

  199. Winkler, M.: Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system. J. Anal. Math. 141, 585–624 (2020)

    MathSciNet  Google Scholar 

  200. Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72, 1044–1064 (2010)

    MathSciNet  MATH  Google Scholar 

  201. Winkler, M., Yokota, T.: Stabilization in the logarithmic Keller-Segel system. Nonlinear Anal. 170, 123–141 (2018)

    MathSciNet  MATH  Google Scholar 

  202. Wrzosek, D.: Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear Anal. 59, 1293–1310 (2004)

    MathSciNet  MATH  Google Scholar 

  203. Wu, G., Zheng, X.: On the well-posedness for Keller-Segel system with fractional diffusion. Math. Methods Appl. Sci. 34, 1739–1750 (2011)

    MathSciNet  MATH  Google Scholar 

  204. Xiang, T.: Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with or without growth source. J. Differ. Equ. 258, 4275–4323 (2015)

    MathSciNet  MATH  Google Scholar 

  205. Xiang, T.: How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system? J. Math. Anal. Appl. 459, 1172–1200 (2018)

    MathSciNet  MATH  Google Scholar 

  206. Xiang, T.: Chemotactic aggregation versus logistic damping on boundedness in the \(3D\) minimal Keller-Segel model. SIAM J. Appl. Math. 78, 2420–2438 (2018)

    MathSciNet  MATH  Google Scholar 

  207. Xiang, T.: Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system. J. Math. Phys. 59, 081502 (2018)

    MathSciNet  MATH  Google Scholar 

  208. Xinhua, Z., Song, J.: Globally bounded in-time solutions to a parabolic-elliptic system modelling chemotaxis. Acta Math. Sci. 27, 421–429 (2007)

    MathSciNet  MATH  Google Scholar 

  209. Yan, J., Li, Y.: Global generalized solutions to a Keller-Segel system with nonlinear diffusion and singular sensitivity. Nonlinear Anal. 176, 288–302 (2018)

    MathSciNet  MATH  Google Scholar 

  210. Yokota, T., Yoshino, N.: Existence of solutions to chemotaxis dynamics with Lipschitz diffusion and superlinear growth. J. Math. Anal. Appl. 419, 756–774 (2014)

    MathSciNet  MATH  Google Scholar 

  211. Yoon, C., Kim, Y-J.: Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion. Acta Appl. Math. 149, 101–123 (2017)

    MathSciNet  MATH  Google Scholar 

  212. Yu, H., Wang, W., Zheng, S.: Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity. J. Math. Anal. Appl. 461, 1748–1770 (2018)

    MathSciNet  MATH  Google Scholar 

  213. Zhang, R., Zhu, J., Loula, A.F.D., Yu, X.: Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model. J. Comput. Appl. Math. 302, 312–326 (2016)

    MathSciNet  MATH  Google Scholar 

  214. Zhang, J., Zhu, J., Zhang, R.: Characteristic splitting mixed finite element analysis of Keller-Segel chemotaxis models. Appl. Math. Comput. 278, 33–44 (2016)

    MathSciNet  MATH  Google Scholar 

  215. Zhao, J.: Well-posedness and Gevrey analyticity of the generalized Keller-Segel system in critical Besov spaces. Ann. Mat. Pura Appl. 197, 521–548 (2018)

    MathSciNet  MATH  Google Scholar 

  216. Zhao, X., Zheng, S.: Global existence and asymptotic behavior to achemotaxis-consumption system with singular sensitivity and logistic source. Nonlinear Anal., Real World Appl. 42, 120–139 (2018)

    MathSciNet  MATH  Google Scholar 

  217. Zhao, J., Mu, C.L., Wang, L.C., Lin, K.: A quasilinear parabolic-elliptic chemotaxis-growth system with nonlinear secretion. Appl. Anal. (2018). https://doi.org/10.1080/00036811.2018.1489955

    Article  MATH  Google Scholar 

  218. Zheng, J., Ke, Y.: Blow-up prevention by nonlinear diffusion in a 2D Keller-Segel-Navier-Stokes system with rotational flux. J. Differ. Equ. 268, 7092–7120 (2020)

    MathSciNet  MATH  Google Scholar 

  219. Zheng, P., Mu, C., Hu, X., Tian, Y.: Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source. J. Math. Anal. Appl. 424, 509–522 (2015)

    MathSciNet  MATH  Google Scholar 

  220. Zhou, G., Saito, N.: Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis. Numer. Math. 135, 265–311 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Authors thank the referees for constructive comments which have improved the quality of the paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurusamy Arumugam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author thanks CSIR for the financial support under the grant No. 25(0263)/17/EMR-II and partly DST-SERB under the grant MTR/2018/00096.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, G., Tyagi, J. Keller-Segel Chemotaxis Models: A Review. Acta Appl Math 171, 6 (2021). https://doi.org/10.1007/s10440-020-00374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-020-00374-2

Mathematics Subject Classification (2010)

Keywords

Navigation