Skip to main content
Log in

Shadow Wave Tracking Procedure and Initial Data Problem for Pressureless Gas Model

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper the new procedure for a construction of an approximated solution to initial data problem for one-dimensional pressureless gas dynamics system is introduced. The procedure is based on solving the Riemann problems and tracking singular wave interactions. For that system the new problem with initial data containing Dirac delta function is solved whenever two waves interact. Use of the shadow waves as singular solutions to such problems enables us to easily solve the interaction problems. That permits us to make a simple extension of the well known Wave Front Tracking algorithm. A non-standard part of the new algorithm is dealing with delta functions as a part of a solution. In the final part of the paper we show that the approximated solution has a subsequence converging to a signed Radon measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. Partial Differ. Equ. 24, 2173–2189 (1999)

    Article  MathSciNet  Google Scholar 

  2. Boudin, L.: A solution with bounded expansion rate to the model of viscous pressureless gases. SIAM J. Math. Anal. 32, 172–193 (2000)

    Article  MathSciNet  Google Scholar 

  3. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35, 2317–2328 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bressan, A.: Hyperbolic Systems of Conservation Laws. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  5. Bressan, A.: Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl. 170, 414–432 (1992)

    Article  MathSciNet  Google Scholar 

  6. Cavalletti, F., Sedjro, M., Westdickenberg, M.: A simple proof of global existence for the 1D pressureless gas dynamics equations. SIAM J. Math. Anal. 47, 66–79 (2015)

    Article  MathSciNet  Google Scholar 

  7. Conway, J.B.: A Course in Abstract Analysis, vol. 141. American Mathematical Soc., ??? (2012)

    Book  Google Scholar 

  8. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Heidelberg (2000)

    Book  Google Scholar 

  9. Dafermos, C.: The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Differ. Equ. 14, 202–212 (1973)

    Article  MathSciNet  Google Scholar 

  10. Daw, D.A.E., Nedeljkov, M.: Shadow waves for pressureless gas balance laws. Appl. Math. Lett. 57, 54–59 (2016)

    Article  MathSciNet  Google Scholar 

  11. De Lellis, C.: Rectifiable Sets, Densities and Tangent Measures. European Mathematical Society (EMS), Zurich (2008)

    Book  Google Scholar 

  12. De Lellis, C., Székelyhidi, L. Jr: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195, 225–260 (2010)

    Article  MathSciNet  Google Scholar 

  13. Weinan, E., Rykov, Y.G., Sinai, Ya.G.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion dynamics. Commun. Math. Phys. 177, 349–380 (1996)

    Article  MathSciNet  Google Scholar 

  14. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Springer, Berlin (2015)

    Book  Google Scholar 

  15. Huang, F., Wang, Z.: Well posedness for pressureless flow. Commun. Math. Phys. 222, 117–146 (2001)

    Article  MathSciNet  Google Scholar 

  16. LeFloch, P.: An existence and uniqueness result for two nonstrictly hyperbolic systems. In: Keyfitz, B.L., Shearer, M. (eds.) Nonlinear Evolution Equations That Change Type. IMA Volumes in Math. and Its Appl., vol. 27, pp. 126–138. Springer, Berlin (1990)

    Chapter  Google Scholar 

  17. Keyfitz, B.L.: Singular shocks: retrospective and prospective. Confluentes Math. 3, 445–470 (2011)

    Article  MathSciNet  Google Scholar 

  18. Keyfitz, B.L., Kranzer, H.C.: Spaces of weighted measures for conservation laws with singular shock solutions. J. Differ. Equ. 118, 420–451 (1995)

    Article  MathSciNet  Google Scholar 

  19. Mazzotti, M.: Non-classical composition fronts in nonlinear chromatography-Delta-shock. Ind. Eng. Chem. Res. 48, 7733–7752 (2009)

    Article  Google Scholar 

  20. Natile, L., Savaré, G.: A Wasserstein approach to the one-dimensional sticky particle system. SIAM J. Math. Anal. 41, 1340–1365 (2009)

    Article  MathSciNet  Google Scholar 

  21. Nguyen, T., Tudorascu, A.: One-dimensional pressureless gas systems with/without viscosity. Commun. Partial Differ. Equ. 40, 1619–1665 (2015)

    Article  MathSciNet  Google Scholar 

  22. Nedeljkov, M.: Shadow waves, entropies and interactions for delta and singular shocks. Arch. Ration. Mech. Anal. 197, 489–537 (2010)

    Article  MathSciNet  Google Scholar 

  23. Nedeljkov, M.: Higher order shadow waves and delta shock blow up in the Chaplygin gas. J. Differ. Equ. 256, 3859–3887 (2014)

    Article  MathSciNet  Google Scholar 

  24. Nedeljkov, M., Ružičić, S.: On the uniqueness of solution to generalized Chaplygin gas. Discrete Contin. Dyn. Syst. 37, 4439–4460 (2017)

    Article  MathSciNet  Google Scholar 

  25. Nedeljkov, M., Ružičić, S.: Energy dissipation admissibility condition for shadow waves, preprint (2020)

  26. Nedeljkov, M.: Delta and singular delta locus for one dimensional systems of conservation laws. Math. Methods Appl. Sci. 27, 931–955 (2004)

    Article  MathSciNet  Google Scholar 

  27. Risebro, N.H.: A front-tracking alternative to the random choice method. Proc. Am. Math. Soc. 117, 1125–1139 (1993)

    Article  MathSciNet  Google Scholar 

  28. Shen, C.: The Riemann problem for the pressureless Euler system with the Coulomb-like friction term. IMA J. Appl. Math. 81, 76–99 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Sheng, W.C., Zhang, T.: The Riemann problem for transportation equation in gas dynamics. Mem. Am. Math. Soc. 137, 1–77 (1999)

    MathSciNet  Google Scholar 

  30. Sun, M.: Interactions of delta shock waves for the chromatography equations. Appl. Math. Lett. 26(6), 631–637 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the reviewer’s valuable comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Nedeljkov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ružičić, S., Nedeljkov, M. Shadow Wave Tracking Procedure and Initial Data Problem for Pressureless Gas Model. Acta Appl Math 171, 10 (2021). https://doi.org/10.1007/s10440-020-00377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-020-00377-z

Mathematics Subject Classification

Keywords

Navigation