Skip to main content

Advertisement

Log in

On a Precise Scaling to Caffarelli-Kohn-Nirenberg Inequality

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We analyze the general form of Caffarelli-Kohn-Nirenberg inequality. Due to a new introduced parameter, this inequality presents two distinguishable ranges. One of them, the inequality is shown to be the interpolation between Hardy and weighted Sobolev inequalities. The other range, which is no more an interpolation, the positive constant in the inequality is not necessarily bounded for all value of the parameters. In both cases, the precise value of the constants were given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Felli, V., Peral, I.: A remark on perturbed elliptic equations of Caffarelli-Kohn-Nirenberg type. Rev. Mat. Complut. 18(2), 339–351 (2005)

    Article  MathSciNet  Google Scholar 

  2. Abdellaoui, B., Felli, V., Peral, I.: Some remarks on systems of elliptic equations doubly critical in the whole \(\mathbb{R}^{n}\). Calc. Var. 34, 97–137 (2009)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Rabinowit, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 7, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  4. Bouchekif, M., Matallah, A.: On singular nonhomogeneous elliptic equations involving critical Caffarelli-Kohn-Nirenberg exponent. Ric. Mat. 58, 207–218 (2009)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. XXXV, 771–831 (1982)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53(3), 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Catrina, F., Wang, Z.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extremal functions. Commun. Pure Appl. Math. LIV, 0229 (2001)

    Article  MathSciNet  Google Scholar 

  8. Cirmi, G.R., Porzio, M.M.: \(L^{1}\)-solutions for some nonlinear degenerate elliptic and parabolic equations. Ann. Mat. Pura Appl. 169, 67–86 (1995)

    Article  MathSciNet  Google Scholar 

  9. Dolbeault, J., Esteban, M.J.: A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. J. Numer. Math. 20(3–4), 233–249 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Dolbeault, J., Esteban, M.J., Loss, M., Muratori, M.: Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities. C. R. Acad. Sci. Paris, Ser. I 355, 133–154 (2017)

    Article  MathSciNet  Google Scholar 

  11. Dolbeault, J., Esteban, M.J., Loss, M.: Symmetry of optimizers of the Caffarelli-Kohn-Nirenberg inequalities. Preprint hal-01286546. arXiv:1603.03574

  12. Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic operators. Commun. Partial Differ. Equ. 7, 77–116 (1982)

    Article  Google Scholar 

  13. Folland, G.: Real Analysis and Its Applications. Wiley, New York (1999)

    MATH  Google Scholar 

  14. Ghergu, M., Radolescu, V.: Singular elliptic problems with lack of compactness. Ann. Mat. 185, 63–79 (2006)

    Article  MathSciNet  Google Scholar 

  15. Horiuchi, T., Kumilin, P.: The Caffarelli-Kohn-Nirenberg type inequalities involving critical and supercritical weights. Proc. Jpn. Acad., Ser. A, Math. Sci. 88, 1–6 (2012)

    Article  MathSciNet  Google Scholar 

  16. Kufner, A., Maligranda, L., Persson, L-E.: The prehistory of the Hardy inequality. Am. Math. Mon. 113(8), 715–732 (2006)

    Article  MathSciNet  Google Scholar 

  17. Lieb, E., Loss, M., Ruskai, M.B.: Inequalities, 1st edn. Springer, Berlin (2002)

    Google Scholar 

  18. Mitidieri, E.: A simple approach to Hardy inequalities. Math. Notes 67, 479–486 (2000)

    Article  MathSciNet  Google Scholar 

  19. Sobolev, S.L.: On a theorem of functional analysis. In: AMS Trans. 2, vol. 34 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wladimir Neves.

Ethics declarations

Conflict of interest

Author Wladimir Neves has received research grants from CNPq through the grant 308064/2019-4.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this last section, for the sake of completeness of this paper, we provide the proofs of Hardy and also weighted Sobolev inequalities, which were used here to show the Caffarelli-Kohn-Nirenberg inequality.

Proof of Hardy’s inequality

1. First recall (9), that is

$$ \big( \int _{\mathbb{R}^{n}}\left \| x\right \| ^{(\alpha -1)p}{ |u(x)|^{p}} dx \big)^{1/p} \leq C_{H} \big( \int _{\mathbb{R}^{n}}\left \| x \right \| ^{\alpha p}\left \| \nabla u(x)\right \| ^{p} dx \big)^{1/p}. $$

The proof is divided into two steps, and we follow the main idea of convenient vector fields as introduced by Metidieri in [18]. Let \(V: \mathbb{R}^{n} \setminus \left \{ 0\right \} \to \mathbb{R}^{n}\) be a smooth vector field, defined by

$$ V_{i}(x):= C \ (x_{k} \ x_{k})^{(\alpha -1)p/2} \ x_{i} \qquad (k= 1, \ldots ,n) $$
(24)

for each \(i =1, \ldots ,n\), where the constant \(C\) is chosen a posteriori. This vector field verifies, \((k,j= 1,\ldots ,n)\),

$$ \frac{\partial V_{i}(x)}{\partial x_{j}}= C \Big( (\alpha -1) p \ \|x \|^{(\alpha -1)p-2} \ \delta _{kj} \ x_{k} \ x_{i} + \|x\|^{(\alpha -1)p} \ \delta _{ij} \Big), $$

where \(\delta _{ij}\) is the usual Kronecker delta (symbol). Taking the trace, we have

$$ {\mathrm{div}}V(x)= C \Big( (\alpha -1) p + n \Big) \left \| x\right \| ^{( \alpha -1)p}, $$

hence we take the positive constant \(C= \Big ( (\alpha -1) p + n \Big )^{-1}\), recall that \(\gamma = (\alpha -1)\), \(r= p\) and \(\gamma r + n> 0\).

2. Now, the left-hand side of (9) can be rewritten in the following way

$$ \int _{\mathbb{R}^{n}}\left \| x\right \| ^{(\alpha -1)p}{|u(x)|^{p}}dx = \int _{\mathbb{R}^{n}}\left |u(x)\right |^{p} {\mathrm{div}} V(x) \, dx $$

and applying the Gauss-Green Theorem, we obtain

$$ \begin{aligned} \int _{\mathbb{R}^{n}}\left \| x\right \| ^{(\alpha -1)p}{|u(x)|^{p}} dx &= - \int _{\mathbb{R}^{n}} V(x) \cdot \nabla (|u(x)|^{p}) dx \\ &=-C\int _{\mathbb{R}^{n}}\left \| x\right \| ^{(\alpha -1)p}(x\cdot \nabla (|u(x)|^{p})) dx \\ &\leq p C \int _{\mathbb{R}^{n}}\left \| x\right \| ^{(\alpha -1)p+1}|u(x)|^{p-1} \left \| \nabla u(x)\right \| dx. \end{aligned} $$
(25)

Applying Young’s inequality, we have

$$ \begin{aligned} \int _{\mathbb{R}^{n}} & \left \| x\right \| ^{(\alpha -1)p+1} |u(x)|^{p-1} \left \| \nabla u(x)\right \| dx \\ &\leq \frac{1}{\lambda ^{q}} \int _{\mathbb{R}^{n}} \left (\left \| x \right \| ^{(\alpha -1)(p-1)}|u(x)|^{p-1}\right )^{q} dx + \lambda ^{p} \int _{\mathbb{R}^{n}} (\left \| x\right \| ^{\alpha }\left \| \nabla u(x) \right \| )^{p} dx, \end{aligned} $$
(26)

where \(\lambda \) is an arbitrary positive number, and \(p, q\) are conjugate exponents. From (25) and (26), it follows that

$$ \int _{\mathbb{R}^{n}} \left \| x\right \| ^{(\alpha -1)p} |u(x)|^{p} dx \leq C(\lambda ) \int _{\mathbb{R}^{n}}\left \| x\right \| ^{\alpha p} \left \| \nabla u(x)\right \| ^{p}dx, $$

where

$$ C(\lambda )= \frac{p C \ \lambda ^{p+q}}{\lambda ^{q} - p C} $$

and taking the minimum of \(C(\lambda )\) (with respect to \(\lambda \)), we denote this value by \((C_{H})^{p}\), which completes the proof of Hardy’s inequality. □

Proof of Weighted Sobolev inequality

1. Again we first recall (8), that is

$$ \big( \int _{\mathbb{R}^{n}} \|x\|^{\alpha p^{*}} |u(x)|^{p^{*}}dx \big)^{{1}/{p^{*}}} \leq C_{S} \; \big( \int _{\mathbb{R}^{n}} \|x\|^{ \alpha p} \left \| \nabla u(x)\right \| ^{p} dx \big)^{{1}/{p}}, $$

and divide the proof into two parts. The main idea here is to use the Hardy inequality (9) and the classical Sobolev inequality. We define a function

$$ f:\mathbb{R}^{n}\rightarrow \mathbb{R}, \quad f(x):=\left \| x\right \| ^{ \alpha }|u(x)| $$
(27)

and observe that, \(f\) is smooth away from zero. Applying the product rule, we get

$$ \nabla f(x)=\alpha \left \| x\right \| ^{\alpha -2}|u(x)|x+\left \| x \right \| ^{\alpha }\nabla (|u(x)|), $$

and from this, we obtain

$$ \left \| \nabla f(x)\right \| \leq |\alpha |\left \| x\right \| ^{ \alpha -1}|u(x)| +\left \| x\right \| ^{\alpha }\left \| \nabla u(x) \right \| . $$
(28)

2. Now, let us recall the classical Sobolev inequality:

$$ \left (\int _{\mathbb{R}^{n}}|f(x)|^{p^{*}} dx \right )^{1/p^{*}}\leq C \left (\int _{\mathbb{R}^{n}}\left \| \nabla f(x)\right \| ^{p} dx \right )^{1/p}, $$

for any function \(f \in W^{1,p}(\mathbb{R}^{n})\) and \(1< p< n\). From this inequality and (27), (28), we obtain applying Hardy’s inequality

$$ \begin{aligned} \big(\int _{\mathbb{R}^{n}} \left \| x\right \| ^{\alpha p^{*}} & |u(x)|^{p^{*}} dx \big)^{p/p^{*}} \leq C^{p} \int _{\mathbb{R}^{n}} \big( |\alpha | \left \| x\right \| ^{(\alpha -1)}|u(x)| + \left \| x\right \| ^{\alpha } \left \| \nabla u(x)\right \| \big)^{p} dx \\ & \leq (2 C)^{p} \left ( |\alpha |^{p}\int _{\mathbb{R}^{n}}\left \| x \right \| ^{(\alpha -1)p}|u(x)|^{p}dx +\int _{\mathbb{R}^{n}}\left \| x \right \| ^{\alpha p}\left \| \nabla u(x)\right \| ^{p}dx\right ) \\ & \leq (C_{S})^{p} \int _{\mathbb{R}^{n}}\left \| x\right \| ^{\alpha p} \left \| \nabla u(x)\right \| ^{p} dx, \end{aligned} $$

where we have defined \(C_{S}:= 2 C \big ( |\alpha |^{p} (C_{H})^{p} +1 \big )^{1/p}\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazan, A., Neves, W. On a Precise Scaling to Caffarelli-Kohn-Nirenberg Inequality. Acta Appl Math 171, 2 (2021). https://doi.org/10.1007/s10440-020-00370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-020-00370-6

Keywords

Navigation