Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Update
  • Published:

Inducible mouse models of colon cancer for the analysis of sporadic and inflammation-driven tumor progression and lymph node metastasis

Abstract

Despite advances in the detection and therapy of colorectal cancer (CRC) in recent years, CRC has remained a major challenge in clinical practice. Although alternative methods for modeling CRC have been developed, animal models of CRC remain helpful when analyzing molecular aspects of pathogenesis and are often used to perform preclinical in vivo studies of potential therapeutics. This protocol updates our protocol published in 2007, which provided an azoxymethane (AOM)-based setup for investigations into sporadic (Step 5A) and, when combined with dextran sodium sulfate (Step 5B), inflammation-associated tumor growth. This update also extends the applications beyond those of the original protocol by including an option in which AOM is serially applied to mice with p53 deficiency in the intestinal epithelium (Step 5C). In this model, the combination of p53 deficiency and AOM promotes tumor development, including growth of invasive cancers and lymph node metastasis. It also provides details on analysis of colorectal tumor growth and metastasis, including analysis of partial epithelial-to-mesenchymal transition, cell isolation and co-culture studies, high-resolution mini-endoscopy, light-sheet fluorescence microscopy and micro-CT imaging in mice. The target audience for our protocol is researchers who plan in vivo studies to address mechanisms influencing sporadic or inflammation-driven tumor development, including the analysis of local invasiveness and lymph node metastasis. It is suitable for preclinical in vivo testing of novel drugs and other interventional strategies for clinical translation, plus the evaluation of emerging imaging devices/modalities. It can be completed within 24 weeks (using Step 5A/C) or 10 weeks (using Step 5B).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schemes of AOM-based colon tumor induction in mice.
Fig. 2: Step-by-step preparation of the colon for tumor analysis.
Fig. 3: Development of colon tumors in mice and in vivo monitoring by mini-endoscopy.
Fig. 4: Advanced in vivo and ex vivo imaging of colon tumors by micro-CT and LSFM.
Fig. 5: Ex vivo evaluation of colon tumor development in the AOM–DSS model.
Fig. 6: Ex vivo evaluation of tumor invasiveness in the Tp53ΔIEC–AOM model.
Fig. 7: Partial EMT of invasive tumor cells.
Fig. 8: Analysis and in vitro studies of the tumor stroma.
Fig. 9: Studies of the CAF-associated crosstalk with epithelial cells.

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article (Fig. 2, Fig. 4a, Fig. 7, Fig. 9b, images in Box 2). Some experiments were performed during previous studies, and similar data were published earlier in different formats (Fig. 3 in ref. 24, Fig. 4b,c and Fig. 5 in ref. 23, Fig. 6 in ref. 20, Fig. 8 and Fig. 9a in ref. 23). Additional information can be provided by the authors upon request.

References

  1. Brenner, H., Kloor, M. & Pox, C. P. Colorectal cancer. Lancet 383, 1490–1502 (2014).

    PubMed  Google Scholar 

  2. Powell, S. M. et al. Molecular diagnosis of familial adenomatous polyposis. N. Engl. J. Med. 329, 1982–1987 (1993).

    CAS  PubMed  Google Scholar 

  3. Peltomaki, P. Update on Lynch syndrome genomics. Fam. Cancer 15, 385–393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Beaugerie, L. & Itzkowitz, S. H. Cancers complicating inflammatory bowel disease. N. Engl. J. Med. 372, 1441–1452 (2015).

    CAS  PubMed  Google Scholar 

  5. Wei, E. K. et al. Comparison of risk factors for colon and rectal cancer. Int. J. Cancer 108, 433–442 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Koliaraki, V., Pallangyo, C. K., Greten, F. R. & Kollias, G. Mesenchymal cells in colon cancer. Gastroenterology 152, 964–979 (2017).

    CAS  PubMed  Google Scholar 

  9. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  10. Zhu, W. et al. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J. Exp. Med. 216, 2378–2393 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Neufert, C., Becker, C. & Neurath, M. F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat. Protoc. 2, 1998–2004 (2007).

    CAS  PubMed  Google Scholar 

  12. Corpet, D. E. & Pierre, F. How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men. Eur. J. Cancer 41, 1911–1922 (2005).

    CAS  PubMed  Google Scholar 

  13. Boivin, G. P. et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124, 762–777 (2003).

    PubMed  Google Scholar 

  14. Moser, A., Pitot, H. & Dove, W. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    CAS  PubMed  Google Scholar 

  15. Roper, J. et al. Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation. Nat. Protoc. 13, 217–234 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fumagalli, A. et al. A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression. Nat. Protoc. 13, 235–247 (2018).

    CAS  PubMed  Google Scholar 

  17. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bissahoyo, A. et al. Azoxymethane is a genetic background-dependent colorectal tumor initiator and promoter in mice: effects of dose, route, and diet. Toxicol. Sci. 88, 340–345 (2005).

    CAS  PubMed  Google Scholar 

  19. Stolfi, C. et al. Inhibition of colon carcinogenesis by 2-methoxy-5-amino-N-hydroxybenzamide, a novel derivative of mesalamine. Gastroenterology 138, 221–230 (2010).

    CAS  PubMed  Google Scholar 

  20. Schwitalla, S. et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23, 93–106 (2013).

    CAS  PubMed  Google Scholar 

  21. Nambiar, P. R. et al. Preliminary analysis of azoxymethane induced colon tumors in inbred mice commonly used as transgenic/knockout progenitors. Int. J. Oncol. 22, 145–150 (2003).

    CAS  PubMed  Google Scholar 

  22. Suzuki, R., Miyamoto, S., Yasui, Y., Sugie, S. & Tanaka, T. Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate. BMC Cancer 7, 84 (2007).

    PubMed  PubMed Central  Google Scholar 

  23. Heichler, C. et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut 69, 1269–1282 (2020).

    CAS  PubMed  Google Scholar 

  24. Neufert, C. et al. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J. Clin. Invest. 123, 1428–1443 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sohn, O. S., Fiala, E. S., Requeijo, S. P., Weisburger, J. H. & Gonzalez, F. J. Differential effects of CYP2E1 status on the metabolic activation of the colon carcinogens azoxymethane and methylazoxymethanol. Cancer Res. 61, 8435–8440 (2001).

    CAS  PubMed  Google Scholar 

  26. Fiala, E. S. Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane. Cancer 40, 2436–2445 (1977).

    CAS  PubMed  Google Scholar 

  27. Reddy, B. S., Weisburger, J. H., Narisawa, T. & Wynder, E. L. Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and N-methyl-Nʹ-nitro-N-nitrosoguanidine. Cancer Res. 34, 2368–2372 (1974).

    CAS  PubMed  Google Scholar 

  28. Evans, J. T., Hauschka, T. S. & Mittelman, A. Brief communication: differential susceptibility of four mouse strains to induction of multiple large-bowel neoplasms by 1,2-dimethylhydrazine. J. Natl Cancer Inst. 52, 999–1000 (1974).

    CAS  PubMed  Google Scholar 

  29. Suzuki, R., Kohno, H., Sugie, S., Nakagama, H. & Tanaka, T. Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis 27, 162–169 (2005).

    PubMed  Google Scholar 

  30. Tanaka, T. et al. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 94, 965–973 (2003).

    CAS  PubMed  Google Scholar 

  31. De Oliveira, T. et al. Loss of Stat6 affects chromatin condensation in intestinal epithelial cells causing diverse outcome in murine models of inflammation-associated and sporadic colon carcinogenesis. Oncogene 38, 1787–1801 (2019).

    PubMed  Google Scholar 

  32. Llewellyn, S. R. et al. Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice. Gastroenterology 154, 1037–1046 e1032 (2018).

    PubMed  Google Scholar 

  33. Mähler, M. et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am. J. Physiol. 274, G544–G551 (1998).

    PubMed  Google Scholar 

  34. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    CAS  Google Scholar 

  35. Madison, B. B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).

    CAS  PubMed  Google Scholar 

  36. el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    CAS  PubMed  Google Scholar 

  37. Rausch, P. et al. Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int. J. Med. Microbiol. 306, 343–355 (2016).

    PubMed  Google Scholar 

  38. Miller, L. R. et al. Considering sex as a biological variable in preclinical research. FASEB J. 31, 29–34 (2017).

    CAS  PubMed  Google Scholar 

  39. Lee, S. M. et al. The effect of sex on the azoxymethane/dextran sulfate sodium-treated mice model of colon cancer. J. Cancer Prev. 21, 271–278 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Amos-Landgraf, J. M. et al. Sex disparity in colonic adenomagenesis involves promotion by male hormones, not protection by female hormones. Proc. Natl Acad. Sci. USA 111, 16514–16519 (2014).

    CAS  PubMed  Google Scholar 

  41. Crnčec, I. et al. STAT1 is a sex-specific tumor suppressor in colitis-associated colorectal cancer. Mol. Oncol. 12, 514–528 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656 (1998).

    CAS  PubMed  Google Scholar 

  43. Kucherlapati, M. H. et al. An Msh2 conditional knockout mouse for studying intestinal cancer and testing anticancer agents. Gastroenterology 138, 993–1002 e1001 (2010).

    PubMed  Google Scholar 

  44. O’Rourke, K. P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997).

    CAS  PubMed  Google Scholar 

  46. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    CAS  PubMed  Google Scholar 

  47. Zigmond, E. et al. Utilization of murine colonoscopy for orthotopic implantation of colorectal cancer. PloS ONE 6, e28858 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahe, M. M. et al. Establishment of gastrointestinal epithelial organoids. Curr. Protoc. Mouse Biol. 3, 217–240 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  51. Becker, C., Fantini, M. C. & Neurath, M. F. High resolution colonoscopy in live mice. Nat. Protoc. 1, 2900–2904 (2006).

    CAS  PubMed  Google Scholar 

  52. Neurath, M. F. et al. Assessment of tumor development and wound healing using endoscopic techniques in mice. Gastroenterology 139, 1837–1843 e1831 (2010).

    PubMed  Google Scholar 

  53. Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O. & Yang, V. W. Improved Swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. J. Vis. Exp. https://doi.org/10.3791/54161 (2016).

  54. Jung, D. et al. Contrast-enhanced microCT for visualizing and evaluating murine intestinal inflammation. Theranostics 8, 6357–6366 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zundler, S. et al. Three-dimensional cross-sectional light-sheet microscopy imaging of the inflamed mouse gut. Gastroenterology 153, 898–900 (2017).

    PubMed  Google Scholar 

  56. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    CAS  PubMed  Google Scholar 

  57. Stemmler, M. P., Eccles, R. L., Brabletz, S. & Brabletz, T. Non-redundant functions of EMT transcription factors. Nat. Cell Biol. 21, 102–112 (2019).

    CAS  PubMed  Google Scholar 

  58. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319 (2015).

    CAS  PubMed  Google Scholar 

  59. Baek, S. J. et al. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553–1560 (2006).

    CAS  PubMed  Google Scholar 

  60. Pallangyo, C. K., Ziegler, P. K. & Greten, F. R. IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J. Exp. Med. 212, 2253–2266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gage, G. J., Kipke, D. R. & Shain, W. Whole animal perfusion fixation for rodents. J. Vis. Exp. https://doi.org/10.3791/3564 (2012).

  62. Klingberg, A. et al. Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. J. Am. Soc. Nephrol. 28, 452–459 (2017).

    CAS  PubMed  Google Scholar 

  63. Schmid, B. et al. 3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods 16, 278–280 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Enderle, K. Hofmann, and I. Zoeller-Utz for excellent technical assistance. This work was funded by the DFG (FOR2438/project 9 to C.N. and M.F.N.; NE1927/2-2, SFB1181-C02 and TRR241-A08 to C.N.) and by the Bartling Stiftung (to C.N.). T.B. was supported by grants from German Research Foundation (FOR 2438/project 4; BR 1399/9-1; 1399/10-1; 1399/13-1).

Author information

Authors and Affiliations

Authors

Contributions

C.N., C.H., T.B., K.S. and V.B. designed and performed the experiments. C.N., C.H., T.B., V.B., F.R.G. and M.F.N. analyzed and discussed the data. C.N., C.H. and T.B. wrote the manuscript.

Corresponding author

Correspondence to Clemens Neufert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Jarom Heijmans and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Related links

Key references using this protocol

Neufert, C. et al. J. Clin. Invest. 123, 1428–1443 (2013): https://doi.org/10.1172/JCI63748

Schwitalla, S. et al. Cancer Cell 23, 93–103 (2013): https://doi.org/10.1016/j.ccr.2012.11.014

Heichler, C. et al. Gut 69, 1269–1282 (2020): https://doi.org/10.1136/gutjnl-2019-319200

This protocol is an update to: Nat. Protoc. 2, 1998–2004 (2007): https://doi.org/10.1038/nprot.2007.279

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neufert, C., Heichler, C., Brabletz, T. et al. Inducible mouse models of colon cancer for the analysis of sporadic and inflammation-driven tumor progression and lymph node metastasis. Nat Protoc 16, 61–85 (2021). https://doi.org/10.1038/s41596-020-00412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00412-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer