Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts

Abstract

Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match–mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Locations of studies on phenological asynchrony identified by our analysis.
Fig. 2: Testing the five criteria.
Fig. 3: Consumer versus resource slopes in relation to year and temperature.
Fig. 4: Consequences of trophic asynchrony per taxon.

Similar content being viewed by others

Data availability

All data files related to this review are available at the Open Science Framework: https://osf.io/c8xzd/.

Code availability

All R code to generate the results in this paper can be combined with the data files, and are available at the Open Science Framework: https://osf.io/c8xzd/.

References

  1. Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Walther, G.-R. Community and ecosystem responses to recent climate change. Phil. Trans. R. Soc. B 365, 2019–2024 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).

    Article  PubMed Central  Google Scholar 

  6. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  7. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).

    Article  Google Scholar 

  9. Cushing, D. D. H. D. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26, 249–293 (1990).

    Article  Google Scholar 

  10. Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B 272, 2561–2569 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Durant, J., Hjermann, D., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).

    Article  Google Scholar 

  12. Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).

    Article  Google Scholar 

  13. Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (eds, Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  15. Johansson, J., Kristensen, N. P., Nilsson, J. Å. & Jonzén, N. The eco-evolutionary consequences of interspecific phenological asynchrony - a theoretical perspective. Oikos 124, 102–112 (2015).

    Article  Google Scholar 

  16. Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. Proc. Natl Acad. Sci. USA 114, 10432–10437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).

    Article  Google Scholar 

  18. Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Willson, M. F. & Womble, J. N. Vertebrate exploitation of pulsed marine prey: a review and the example of spawning herring. Rev. Fish Biol. Fish. 16, 183–200 (2006).

    Article  Google Scholar 

  20. Dunn, P. O., Winkler, D. W., Whittingham, L. A., Hannon, S. J. & Robertson, R. J. A test of the mismatch hypothesis: how is timing of reproduction related to food abundance in an aerial insectivore? Ecology 92, 450–61 (2011).

    Article  PubMed  Google Scholar 

  21. Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Samplonius, J. M., Kappers, E. F., Brands, S. & Both, C. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. J. Anim. Ecol. 85, 1255–1264 (2016).

    Article  PubMed  Google Scholar 

  23. Mallord, J. W. et al. Diet flexibility in a declining long-distance migrant may allow it to escape the consequences of phenological mismatch with its caterpillar food supply. Ibis 159, 76–90 (2017).

    Article  Google Scholar 

  24. Youngflesh, C. et al. Circumpolar analysis of the Adélie Penguin reveals the importance of environmental variability in phenological mismatch. Ecology 98, 940–951 (2017).

    Article  PubMed  Google Scholar 

  25. Varpe, Ø. & Fiksen, Ø. Seasonal plankton-fish interactions: light regime, prey phenology, and herring foraging. Ecology 91, 311–318 (2010).

    Article  PubMed  Google Scholar 

  26. Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).

    Article  Google Scholar 

  27. Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84 (2012).

    Article  Google Scholar 

  28. Singer, M. C. & Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: Signal of climate change or pre-existing adaptive strategy? Phil. Trans. R. Soc. B 365, 3161–3176 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vatka, E., Orell, M. & Rytkönen, S. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Glob. Change Biol. 17, 3002–3009 (2011).

    Article  Google Scholar 

  30. Reed, T. E., Jenouvrier, S. & Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82, 131–144 (2013).

    Article  PubMed  Google Scholar 

  31. Reed, T. E., Grøtan, V., Jenouvrier, S., Sæther, B.-E. & Visser, M. E. Population growth in a wild bird is buffered against phenological mismatch. Science 340, 488–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. van Asch, M., Salis, L., Holleman, L. J. M., van Lith, B. & Visser, M. E. Evolutionary response of the egg hatching date of a herbivorous insect under climate change. Nat. Clim. Change 3, 244–248 (2013).

    Article  Google Scholar 

  33. Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. Proc. R. Soc. B 281, 20141611 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ramakers, J. J. C., Gienapp, P. & Visser, M. E. Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird. Evolution 73, 175–187 (2019).

    Article  PubMed  Google Scholar 

  35. Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).

    Article  Google Scholar 

  36. Both, C., Bouwhuis, S., Lessells, C. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. The effects of phenological mismatches on demography. Phil. Trans. R. Soc. B 365, 3177–3186 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Plard, F. et al. Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol. 12, e1001828 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article  Google Scholar 

  41. Keogan, K. et al. Global phenological insensitivity to shifting ocean temperatures among seabirds. Nat. Clim. Change 8, 313–317 (2018).

    Article  Google Scholar 

  42. Visser, M. E. & Holleman, L. J. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. R. Soc. B 268, 289–294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26, 1101–1118 (2012).

    Article  Google Scholar 

  44. Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Vedder, O., Bouwhuis, S. & Sheldon, B. C. Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations. PLoS Biol. 11, e1001605 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B 277, 1259–1266 (2010).

    Article  PubMed  Google Scholar 

  47. Franks, S. E. et al. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Glob. Change Biol. 24, 957–971 (2018).

    Article  Google Scholar 

  48. Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).

    Article  PubMed  Google Scholar 

  49. Atkinson, A. et al. Questioning the role of phenology shifts and trophic mismatching in a planktonic food web. Prog. Oceanogr. 137, 498–512 (2015).

    Article  Google Scholar 

  50. Ross, M. V., Alisauskas, R. T., Douglas, D. C. & Kellett, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. Ecology 98, 1869–1883 (2017).

    Article  PubMed  Google Scholar 

  51. Chambers, L. E. et al. Phenological changes in the Southern Hemisphere. PLoS ONE 8, e77514 (2013).

    Article  CAS  Google Scholar 

  52. Hurlbert, A. H. & Liang, Z. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS ONE 7, e31662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Newson, S. E. et al. Long-term change in spring and autumn migration phenology of common migrant breeding birds in Britain: results from large-scale citizen science bird recording schemes. Ibis 158, 481–495 (2016).

    Article  Google Scholar 

  54. Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Glob. Change Biol. 22, 3259–3272 (2016).

    Article  Google Scholar 

  55. Tansey, C. J., Hadfield, J. D. & Phillimore, A. B. Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum. Glob. Change Biol. 23, 3321–3334 (2017).

    Article  Google Scholar 

  56. Richardson, A. J. & Poloczanska, E. S. Under-resourced, under threat. Science 320, 1294–1295 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Mackas, D. L., Pepin, P. & Verheye, H. Interannual variability of marine zooplankton and their environments: within- and between-region comparisons. Prog. Oceanogr. 97–100, 1–14 (2012).

    Article  Google Scholar 

  58. O’Brien, T. D., Lorenzoni, L., Isensee, K. & Valdés, L. What are Marine Ecological Time Series telling us about the Ocean? A Status Report IOC Technical Series No. 129 (IOC-UNESCO, 2017).

  59. Burthe, S. et al. Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Mar. Ecol. Prog. Ser. 454, 119–133 (2012).

    Article  Google Scholar 

  60. Stepanian, P. M. et al. Declines in an abundant aquatic insect, the burrowing mayfly, across major North American waterways. Proc. Natl Acad. Sci. USA 117, 2987–2992 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schmidt, K. et al. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Glob. Change Biol. 26, 5574–5587 (2020).

    Article  Google Scholar 

  62. Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190 (2019).

    Article  Google Scholar 

  63. Bradshaw, C. J. A., Mollet, H. F. & Meekan, M. G. Inferring population trends for the world’s largest fish from mark-recapture estimates of survival. J. Anim. Ecol. 76, 480–489 (2007).

    Article  PubMed  Google Scholar 

  64. Bell, J. R. et al. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. J. Anim. Ecol. 84, 21–34 (2015).

    Article  PubMed  Google Scholar 

  65. Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).

    Article  PubMed  Google Scholar 

  66. Tanentzap, A. J. et al. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Sci. Adv. 3, e1601765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).

    Article  Google Scholar 

  68. Beaugrand, G. & Kirby, R. R. How do marine pelagic species respond to climate change? Theories and observations. Ann. Rev. Mar. Sci. 10, 169–197 (2018).

    Article  PubMed  Google Scholar 

  69. Thackeray, S. J., Jones, I. D. & Maberly, S. C. Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96, 523–535 (2008).

    Article  Google Scholar 

  70. Ji, R., Jin, M. & Varpe, Ø. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob. Change Biol. 19, 734–741 (2013).

    Article  Google Scholar 

  71. Durant, J. M. et al. Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecol. Lett. 8, 952–958 (2005).

    Article  PubMed  Google Scholar 

  72. Ramakers, J. J. C., Gienapp, P. & Visser, M. E. Comparing two measures of phenological synchrony in a predator–prey interaction: simpler works better. J. Anim. Ecol. 89, 745–756 (2020).

    Article  PubMed  Google Scholar 

  73. Walters, A. W., De Los Ángeles González Sagrario, M. & Schindler, D. E. Species- and community-level responses combine to drive phenology of lake phytoplankton. Ecology 94, 2188–2194 (2013).

    Article  PubMed  Google Scholar 

  74. Shutt, J. D., Burgess, M. D. & Phillimore, A. B. A spatial perspective on the phenological distribution of the spring woodland caterpillar peak. Am. Nat. 194, E109–E121 (2019).

    Article  PubMed  Google Scholar 

  75. Pochardt, M. et al. Environmental DNA facilitates accurate, inexpensive, and multiyear population estimates of millions of anadromous fish. Mol. Ecol. Resour. 20, 457–467 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Burger, C. et al. Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation. J. Anim. Ecol. 81, 926–936 (2012).

    Article  PubMed  Google Scholar 

  77. Pearce-Higgins, J. W. & Green, R. E. Birds and Climate Change: Impacts and Conservation Responses (Cambridge Univ. Press, 2014).

  78. Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Change Biol. 24, 3780–3790 (2018).

    Article  Google Scholar 

  79. Burgess, M. D. et al. Tritrophic phenological match-mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).

    Article  PubMed  Google Scholar 

  80. Visser, M. E. et al. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLoS Biol. 13, e1002120 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Cholewa, M. & Wesołowski, T. Nestling food of european hole-nesting passerines: do we know enough to test the adaptive hypotheses on breeding seasons? Acta Ornithol. 46, 105–116 (2011).

    Article  Google Scholar 

  82. Simmonds, E. G., Cole, E. F., Sheldon, B. C. & Coulson, T. Phenological asynchrony: a ticking time-bomb for seemingly stable populations? Ecol. Lett. https://doi.org/10.1111/ele.13603 (2020).

  83. Simmonds, E. G., Cole, E. F., Sheldon, B. C. & Coulson, T. Testing the effect of quantitative genetic inheritance in structured models on projections of population dynamics. Oikos 129, 559–571 (2020).

    Article  Google Scholar 

  84. Prevéy, J. et al. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Glob. Change Biol. 23, 2660–2671 (2017).

    Article  Google Scholar 

  85. Assmann, J. J. et al. Local snow melt and temperature—but not regional sea ice—explain variation in spring phenology in coastal Arctic tundra. Glob. Change Biol. 25, 2258–2274 (2019).

    Google Scholar 

  86. Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M. & Henry, G. H. R. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob. Change Biol. 21, 4651–4661 (2015).

    Article  Google Scholar 

  87. Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28, 2467–2473 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob. Change Biol. 21, 4364–4376 (2015).

    Article  Google Scholar 

  89. Iler, A. M. et al. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. Glob. Change Biol. 19, 2348–2359 (2013).

    Article  Google Scholar 

  90. Ovaskainen, O. et al. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Sci. Data 7, 47 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Brohan, P. et al. Marine observations of old weather. Bull. Am. Meteorol. Soc. 90, 219–230 (2009).

    Article  Google Scholar 

  92. Phillimore, A. B., Stålhandske, S., Smithers, R. J. & Bernard, R. Dissecting the contributions of plasticity and local adaptation to the phenology of a butterfly and its host plants. Am. Nat. 180, 655–670 (2012).

    Article  PubMed  Google Scholar 

  93. Wang, S. et al. Limitations and challenges of MODIS-derived phenological metrics across different landscapes in pan-Arctic regions. Remote Sens. 10, 1784 (2018).

    Article  Google Scholar 

  94. Helman, D. Land surface phenology: what do we really ‘see’ from space? Sci. Total Environ. 618, 665–673 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).

    Article  Google Scholar 

  96. Bailey, L. D. & Van De Pol, M. Climwin: an R toolbox for climate window analysis. PLoS ONE 11, e0167980 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Teller, B. J., Adler, P. B., Edwards, C. B., Hooker, G. & Ellner, S. P. Linking demography with drivers: climate and competition. Methods Ecol. Evol. 7, 171–183 (2016).

    Article  Google Scholar 

  98. Simmonds, E. G., Cole, E. F. & Sheldon, B. C. Cue identification in phenology: a case study of the predictive performance of current statistical tools. J. Anim. Ecol. 88, 1428–1440 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Iler, A. M., Inouye, D. W., Schmidt, N. M. & Høye, T. T. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity. Ecology 98, 647–655 (2017).

    Article  PubMed  Google Scholar 

  100. Both, C. et al. Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc. R. Soc. B 271, 1657–1662 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B 270, 367–372 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Verhulst, S. & Nilsson, J.-Å. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Phil. Trans. R. Soc. B 363, 399–410 (2008).

    Article  PubMed  Google Scholar 

  103. Mclean, N., Lawson, C. R., Leech, D. I. & van de Pol, M. Predicting when climate-driven phenotypic change affects population dynamics. Ecol. Lett. 19, 595–608 (2016).

    Article  PubMed  Google Scholar 

  104. Gienapp, P. et al. Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change? Phil. Trans. R. Soc. B 368, 20120289 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Husby, T. Reed, M. Visser, I. Myers-Smith and M. Singer for constructive criticism on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceiving ideas and editing the manuscript. J.M.S., A.B.P., A.A., C.H., K.K., S.J.T., J.J.A., M.D.B., J.J., K.H.M., J.W.P.-H., E.G.S., Ø.V. and J.C.W. extracted data for the analyses. J.M.S., A.B.P., A.A., C.H., K.K. and S.J.T. contributed to writing the manuscript. J.M.S. and A.B.P. expanded on the initial ideas to determine the structure and content of the manuscript and wrote most of it. J.M.S. conducted the analyses.

Corresponding author

Correspondence to Jelmer M. Samplonius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Records returned from literature search.

Total publications by year and sum of times cited for the studies captured by our search terms.

Extended Data Fig. 2 PRISMA flowchart for records included and excluded.

Flow chart of the number of papers screened, and those included and excluded using three filters. This process resulted in 109 relevant papers, which provided information on 132 taxa.

Extended Data Fig. 3 Criteria per study.

Overview of all the study-by-taxon combinations identified (200 in 109 papers), showing which (and how many) criteria were studied in individual papers.

Supplementary information

Supplementary Information

Supplementary Methods and Table 1.

Reporting Summary

Supplementary Data 1

Contains three tabs with spreadsheets that are read by the R script and used for the analyses.

Supplementary Data 2

R script to reproduce the analyses for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samplonius, J.M., Atkinson, A., Hassall, C. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat Ecol Evol 5, 155–164 (2021). https://doi.org/10.1038/s41559-020-01357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01357-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene