Skip to main content
Log in

Electromagnetic Field Energy Balance for Dispersive Medium

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

In this paper electromagnetic field energy balance equation for linear homogeneous dispersive stationary medium is deduced in general form. No dispersive limitations on ε′, ε″, μ′, and μ″ are used. Thus the following question is answered: why do existing equations not provide correct values for accumulated energy and dissipated energy in dispersive media? An electromagnetic field energy balance equation for harmonic processes is obtained. This equation separates into active energy and reactive energy equations. Each of these equations contains four terms. For active energy equation the first two terms determine dissipation energy per unit volume. Each of these two terms can be expressed as a sum of three terms: the first one determines dissipation energy for unit volume without dispersion; the other two terms describe dissipation energy density due to dispersion. The third term is a Poynting vector real part change rate for frequency and coordinate, the last term—determines external source active energy density. The first two terms for reactive energy determine electromagnetic field accumulated energy density per unit volume. Each of these two terms of electromagnetic field accumulated energy density can be expressed as a sum of three terms: the first one determines accumulated energy for unit volume without dispersion; the other two terms are accumulated energy additions due to dispersion. The third term is a Poynting vector imaginary part change rate for frequency and coordinate. The last term—determines external source reactive energy density. Presented electromagnetic field energy characteristics definitions satisfy the second law of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Yaghjian, "Classical power and energy relations for macroscopic dipolar continua derived from the microscopic Maxwell equations," Prog. Electromagn. Res. B, v.71, n.1, p.1 (2016). DOI: https://doi.org/10.2528/PIERB16081901.

    Article  Google Scholar 

  2. M. Gustafsson, C. Ehrenborg, "State-space models and stored electromagnetic energy for antennas in dispersive and heterogeneous media," Radio Sci., v.52, n.11, p.1325 (2017). DOI: https://doi.org/10.1002/2017RS006281.

    Article  Google Scholar 

  3. G. Kaiser, "Conservation of reactive EM energy in reactive time," in 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (IEEE, Washington, 2015). DOI: https://doi.org/10.1109/APS.2015.7305241.

    Chapter  Google Scholar 

  4. B. L. G. Jonsson, M. Gustafsson, "Stored energies in electric and magnetic current densities for small antennas," Proc. R. Soc. A Math. Phys. Eng. Sci., v.471, n.2176, p.20140897 (2015). DOI: https://doi.org/10.1098/rspa.2014.0897.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. D. Yaghjian, "Internal Energy, Q-Energy, Poynting’s Theorem, and the Stress Dyadic in Dispersive Material," IEEE Trans. Antennas Propag., v.55, n.6, p.1495 (2007). DOI: https://doi.org/10.1109/TAP.2007.897350.

    Article  Google Scholar 

  6. S. M. Mikki, Y. Antar, "Reactive, localized, and stored energies: The fundamental differences and proposals for new experiments," in 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium) (IEEE, Washington, 2015). DOI: https://doi.org/10.1109/USNC-URSI.2015.7303650.

    Chapter  Google Scholar 

  7. D. Nikolayev, M. Zhadobov, P. Karban, R. Sauleau, "Electromagnetic Radiation Efficiency of Body-Implanted Devices," Phys. Rev. Appl., v.9, n.2, p.024033 (2018). DOI: https://doi.org/10.1103/PhysRevApplied.9.024033.

    Article  Google Scholar 

  8. M. González, J. Pozuelo, J. Baselga, "Electromagnetic Shielding Materials in GHz Range," Chem. Rec., v.18, n.7–8, p.1000 (2018). DOI: https://doi.org/10.1002/tcr.201700066.

    Article  Google Scholar 

  9. D. Sarkar, S. M. Mikki, K. V. Srivastava, Y. M. M. Antar, "Dynamics of Antenna Reactive Energy Using Time-Domain IDM Method," IEEE Trans. Antennas Propag., v.67, n.2, p.1084 (2019). DOI: https://doi.org/10.1109/TAP.2018.2880047.

    Article  Google Scholar 

  10. M. M. Bredov, V. V. Rumiantsev, I. N. Toptygin, Classical Electrodynamics (Lan, St. Petersburg, 2003).

    Google Scholar 

  11. L. D. Landau, P. L. Pitaevskii, E. M. Lifshitz, "Electrodynamics of Continuous Media," in Course of Theoretical Physics (Butterworth-Heinemann, 1984). URI: https://www.elsevier.com/books/electrodynamics-of-continuous-media/landau/978-0-08-057060-0.

    Google Scholar 

  12. E. J. Rothwell, M. J. Cloud, Electromagnetics (CRC Press, Boca Raton, FL, 2018). DOI: https://doi.org/10.1201/9781315222578.

    Book  Google Scholar 

  13. B. Thidé, Electromagnetic Field Theory (Upsilon Books, Uppsala, 2002). URI: https://www.sicyon.com/resources/library/physics/EMFT_Book.pdf.

    Google Scholar 

  14. M. N. O. Sadiku, Numerical Techniques in Electromagnetics (CRC Press, Boca Raton, New York, London, Washington, 2001). URI: http://inis.jinr.ru/sl/Simulation/Sadiku,_Numerical_Techniques_in_Electromagnetics,2001.pdf.

    MATH  Google Scholar 

  15. J. G. Van Bladel, Electromagnetic Fields (Wiley-IEEE Press, New Jersey, 2007). URI: https://www.wiley.com/en-us/Electromagnetic+Fields%2C+2nd+Edition-p-9780471263883.

    Book  Google Scholar 

  16. L. Novotny, Lecture Notes on Electromagnetic Fields and Waves (Zurich, 2013).

  17. L. A. Vainshtein, Electromagnetic Waves (Radio i Svyaz’, Moscow, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Naidenko.

Ethics declarations

ADDITIONAL INFORMATION

V. I. Naidenko

The author declares that he has no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020100052 with DOI: https://doi.org/10.20535/S0021347020100052

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidenko, V.I. Electromagnetic Field Energy Balance for Dispersive Medium. Radioelectron.Commun.Syst. 63, 553–560 (2020). https://doi.org/10.3103/S0735272720100052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720100052

Navigation