Skip to main content
Log in

Preparation of Polymer Composite Membrane Reinforced by Natural Fibers (Fiber and Stem of Date Palm) for Treatment of Industrial Waste Water Residue

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The developed industries are utilized natural waste fibers as a clean criteria device. This work utilized natural composite membranes in the treatment of wastewater to remove different pollutants such as heavy metals (Cd, Cr, Cu), chemical groups as (phenolic compound, acid and basic surfactants) in addition to modify pH values. This membrane was manufactured by solution polymerization between polyvinyl alcohol aqueous solution (1/3 PVOH/H2O) and date palm wastes (leaf and stems) at different mixing ratios 30/70, 50/50, and 70/30 wt % from PVOH and different date palm wastes (leaf and stem). These reactants are introduced at 80°C in a batch reactor for one hour with continuous mixing until reach homogenous aqueous solutions. Then left it for half an hour to give stable form then put it in a suitable moulds coated by paraffin film, dried under insulated oven for 3 h. Afterward different utilization conditions were studied such as type of natural waste (leaf and stem), particle size of these wastes 150 and 250 µm, and additive ratios of them 30/70, 50/50, and 70/30, respectively. All prepared composite membrane give good removal for different pollutants as heavy metals and chemical groups with preferences for samples used stem natural wastes and small particle size 250 micron rather than leaf type with 100% removal efficiency for industrial waste water from petroleum refinery . Optimum conditions that give high efficiency for removal are 250 micron particle size, stem type, and 70/30 mixing ratio from this waste, respectively. XRD, SEM, and EDS analysis proved the same above results of excellent selective adsorptive separation of both heavy metals and chemical pollutants groups (phenol and surfactant) for optimum samples nos. 4 and 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Li, G.C., Chen, J., Li, Q., and Yang, T., Biodegradable composites from pinewood sawdust and polyvinyl alcohol adhesives, Adv. Mater. Res., 2011, vol. 281, pp. 59–63. https://doi.org/10.4028/www.scientific.net/AMR.281.59

    Article  CAS  Google Scholar 

  2. Vartiainen, J., Pöhler, T., Sirola, K., Pylkkänen, L., Alenius, H., Hokkinen, J., et al., Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose, Cellulose, 2011,vol. 18, pp. 775–786.

    Article  CAS  Google Scholar 

  3. Kovacs, T., Naish, V., O’Connor, B., Blaise, C., Gagné, F., Hall, L., et al., An ecotoxicological characterization of nanocrystalline cellulose (NCC), Nanotoxicology, 2010, vol. 4, pp. 255–270.

    Article  CAS  Google Scholar 

  4. Clift, M.J., Foster, E.J., Vanhecke, D., Studer, D., Wick, P., Gehr, P., et al., Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture, Biomacromolecules, 2011, vol. 12, pp. 3666–3673.

    Article  CAS  Google Scholar 

  5. Ni, H., Zeng, S., Wu, J., Cheng, X., Luo, T., Wang, W., et al., Cellulose nanowhiskers: Preparation, characterization and cytotoxicity evaluation, Bio-Med. Mater. Eng., 2012, vol. 22, pp. 121–127.

    Article  Google Scholar 

  6. Jibril, B., Houache, O., Al-Maamari, R., and Al-Rashidi, B., Effects of H3PO4 and KOH in carbonization of lignocellulosic material, J. Anal. Appl. Pyrolysis, 2008, vol. 83, pp. 151–156.

    Article  CAS  Google Scholar 

  7. Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F., and Trouvé, G., Biosorption of basic dye from aqueous solutions by Date Stones and Palm-Trees Waste: Kinetic, equilibrium and thermodynamic studies, Desalination, 2011, vol. 271, pp. 80–87.

    Article  CAS  Google Scholar 

  8. Mahmoodi, N.M., Hayati, B., and Arami, M., Textile dye removal from single and ternary systems using date stones: Kinetic, isotherm, and thermodynamic studies, J. Chem. Eng. Data, 2010, vol. 55, pp. 4638–4649.

    Article  CAS  Google Scholar 

  9. Aksu, Z. and Yener, J., A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents, Waste Manage., 2001, vol. 21, pp. 695–702.

    Article  CAS  Google Scholar 

  10. Okasha, A.Y. and Ibrahim, H.G., Phenol removal from aqueous systems by sorption of using some local waste materials, EJEAFChe, Electron. J. Environ., Agric. Food Chem., 2010, vol. 9, pp. 796–807.

    CAS  Google Scholar 

  11. Abood, N.H., Abas, R.O., and Abas, F.O., Silica/charcoal addition to the composite polyvinyl fluoride membranes for water/organic vapor separation, Eng. Technol. J., 2010, vol. 28, no. 22, pp. 6605–6614.

    Google Scholar 

  12. Al-Ghouti, M.A., Li, J., Salamh, Y., Al-Laqtah, N., Walker, G., and Ahmad, M.N., Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent, J. Hazard. Mater., 2010, vol. 176, pp. 510–520.

    Article  CAS  Google Scholar 

  13. El-Hendawy, A.-N.A., The role of surface chemistry and solution pH on the removal of Pb2+ and Cd2+ ions via effective adsorbents from low-cost biomass, J. Hazard. Mater., 2009,vol. 167, pp. 260–267.

    Article  CAS  Google Scholar 

  14. Banat, F., Al-Asheh, S., and Al-Rousan, D., A comparative study of copper and zinc ion adsorption on to activated and non-activated date-pits, Adsorpt. Sci. Technol., 2002, vol. 20, pp. 319–335.

    Article  CAS  Google Scholar 

  15. Luo, J., Ding, L., Wan, Y., Paullier, P., and Jaffrin, M.Y., Application of NF-RDM (nanofiltration rotating disk membrane) module under extreme hydraulic conditions for the treatment of dairy wastewater, Chem. Eng. J., 2010,vol. 163, pp. 307–316.

    Article  CAS  Google Scholar 

  16. Wu, T., Mohammad, A.W., Jahim, J.M., and Anuar, N., Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: Effect of pressure on membrane fouling, Biochem. Eng. J., 2007, vol. 35, pp. 309–317.

    Article  CAS  Google Scholar 

  17. Khayet, M., Matsuura, T., and Mengual, J., Porous hydrophobic/hydrophilic composite membranes: Estimation of the hydrophobic-layer thickness, J. Membr. Sci., 2005, vol. 266, pp. 68–79.

    Article  CAS  Google Scholar 

  18. Peng, P., Fane, A., and Li, X., Desalination by membrane distillation adopting a hydrophilic membrane, Desalination, 2005, vol. 173, pp. 45–54.

    Article  CAS  Google Scholar 

  19. Yu, H., Ziegler, C., Oszcipok, M., Zobel, M., and Hebling, C., Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells, Electrochim. Acta, 2006, vol. 51, pp. 1199–1207.

    Article  CAS  Google Scholar 

  20. Galambos, I., Molina, J.M., Járay, P., Vatai, G., and Bekássy-Molnár, E., High organic content industrial wastewater treatment by membrane filtration, Desalination, 2004, vol. 162, pp. 117–120.

    Article  CAS  Google Scholar 

  21. Vourch, M., Balannec, B., Chaufer, B., and Dorange, G., Treatment of dairy industry wastewater by reverse osmosis for water reuse, Desalination, 2008, vol. 219, pp. 190–202.

    Article  CAS  Google Scholar 

  22. Dou, Y., Zhang, B., He, M., Yin, G., Cui, Y., and Savina, I.N., Keratin/polyvinyl alcohol blend films cross-linked by dialdehyde starch and their potential application for drug release, Polymers, 2015, vol. 7, pp. 580–591.

    Article  CAS  Google Scholar 

  23. Muro-Urista, C., Díaz-Nava, C., García-Gaitán, B., Zavala-Arce, R.E., Ortega-Aguilar, R.E., Álvarez-Fernández, R., et al., Recuperación de los componentes del lactosuero residual de una industria elaboradora de queso utilizando membranas, Afinidad, 2010, vol. 67, pp. 212–220.

    CAS  Google Scholar 

  24. Jiménez, J.E., Urista, C.M., and Estupiñán, J.C., Optimización del proceso de ultrafiltración de efluentes de una industria de cereales, Afinidad, 2011, vol. 68, pp. 116–123.

    Google Scholar 

  25. Simate, G.S., Cluett, J., Iyuke, S.E., Musapatika, E.T., Ndlovu, S., Walubita, L.F., et al., The treatment of brewery wastewater for reuse: State of the art, Desalination, 2011, vol. 273, pp. 235–247.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank both very effective laboratories of Environmental Research Center, University of Technology (pollutant water and quantitative labs) in addition to servant lab in Ibn–Al-Heatham College for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falak O. Abas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falak O. Abas, Al Obaidy, A.HJ., Awad, E.S. et al. Preparation of Polymer Composite Membrane Reinforced by Natural Fibers (Fiber and Stem of Date Palm) for Treatment of Industrial Waste Water Residue. Theor Found Chem Eng 54, 961–972 (2020). https://doi.org/10.1134/S0040579520050267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520050267

Keywords:

Navigation