Skip to main content
Log in

Evaluation of Anion Effect on the Solubility of Hydrogen Sulfide in Ionic Liquids Using Molecular Dynamics Simulation

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study the solubility of Hydrogen Sulfide (H2S) in four ionic liquids: 1-Ethyl-3-methylimidazoliom Hexafluorophosphate [Emim][PF6], 1-Ethyl-3-ethylimidazolium Tetrafluoroborate [Emim][BF4], 1-Ethyl-3-methylimidazolium Trifluromethanesulfonate [Emim][OTf] and 1-Ethyl-3-methylimidazolium Bistrifluoromethylsulfonilimide [Emim][NTf2] at temperature 343.15 K and relevant pressure has been simulated and the accuracy of obtained data compared to experimental ones. By comparing the radial distribution function of the [Emim]+-based ionic liquids with above-mentioned anions, it is found that the existence of H2S impacts the interactions between anion and cation and also the most appropriate anion among those, is [NTf2] which can properly solve H2S in its own.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Sakhaeinia, H., Molecular simulation of (H2S and CO2) acid gases in ionic liquids, PhD Thesis, Tehran: Islamic Azad University, 2010.

  2. Keskin, S., Kayrak-Talay, D., Akman, U., and Hortaçsu, O., A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids, 2007, vol. 43, p. 150.

    Article  CAS  Google Scholar 

  3. Koel, M., Ionic Liquids in Chemical Analysis, Boca Raton, Fla.: CRC, 2009.

    Google Scholar 

  4. Wilkes, J.S., Wassercheild, P., and Welton, T., Ionic Liquids in Synthesis, Weinheim: Wiley-VCH, 2002.

    Google Scholar 

  5. Bi, W., Zhu, T., Park, W., and Row, K.H., Sorption of carbon dioxide by ionic liquid-based sorbents, Asia-Pac. J. Chem. Eng., 2012, vol. 7, p. 86.

    Article  CAS  Google Scholar 

  6. Doherty, A.P., Diaconu, L., Marley, E., Spedding, P.L., Barhdadi, R., and Troupel, M., Application of clean technologies using electrochemistry in ionic liquids, Asia-Pac. J. Chem. Eng., 2012, vol. 7, p. 14.

    Article  CAS  Google Scholar 

  7. Iguchi, M., Machida, H., Sato, Y., and Smith, R.L., Jr., Correlation of supercritical CO2–ionic liquid vapor–liquid equilibria with the ε*-modified Sanchez–Lacombe equation of state, Asia-Pac. J. Chem. Eng., 2012, vol. 7, p. S95.

    Article  CAS  Google Scholar 

  8. Ramalingam, A. and Jewarantnam, J., Simultaneous interaction between similar and dissimilar structures of aromatic sulfur and aromatic nitrogen compounds with imidazolium-based ionic liquid using quantum chemical method, Asia-Pac. J. Chem. Eng., 2015, vol. 10, p. 904.

    Article  CAS  Google Scholar 

  9. Brennecke, J.F. and Maginn, E.J., Ionic liquids: Innovative fluids for chemical processing, AIChE J., 2001, vol. 47, p. 2384.

    Article  CAS  Google Scholar 

  10. Jacquemin, J., Costa Gomes, M.F., Husson, P., and Majer, V., Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric, J. Chem. Thermodyn., 2006, vol. 38, p. 490.

    Article  CAS  Google Scholar 

  11. Anderson, J.L., Dixon, J.K., and Brennecke, J.F., Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: Comparison to other ionic liquids, Acc. Chem. Res., 2007, vol. 40, p. 1208.

    Article  CAS  PubMed  Google Scholar 

  12. Kumelan, J., Kamps, A.P., Tuma, D., and Maurer, G.J., Solubility of the single gases carbon monoxide and oxygen in the ionic liquid [hmim][Tf2N], J. Chem. Eng. Data, 2009, vol. 54, p. 966.

    Article  CAS  Google Scholar 

  13. Husson-Borg, P., Majer, V., and Gomes, M.F.C., Solubilities of oxygen and carbon dioxide in butyl methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure, J. Chem. Eng. Data, 2003, vol. 48, p. 480.

    Article  CAS  Google Scholar 

  14. Anthony, J.L., Maginn, E.J., and Brennecke, J.F., Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate, J. Phys. Chem. B, 2002, vol. 106, p. 7315.

    Article  CAS  Google Scholar 

  15. Kumełan, J., Kamps, A.P., Urukova, I., Tuma, D., and Maurer, G., Gas solubility in ionic liquids, J. Chem. Thermodyn., 2005, vol. 37, p. 595.

    Article  CAS  Google Scholar 

  16. Hert, D.G., Anderson, J.L., Aki, S.N.V.K., and Brennecke, J.F., Enhancement of oxygen and methane solubility in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide using carbon dioxide, Chem. Commun., 2005, vol. 20, p. 2603.

    Google Scholar 

  17. Raeissi, S., Florusse, L.J., and Peters, C.J., Hydrogen solubilities in the IUPAC ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, J. Chem. Eng. Data, 2011, vol. 56, p. 1105.

    Article  CAS  Google Scholar 

  18. Kumełan, J., Kamps, A.P., Tuma, D., and Maurer, G., Solubility of the single gases H2 and CO in the ionic liquid [bmim][CH3SO4], Fluid Phase Equilib., 2007, vol. 260, p. 3.

    Article  CAS  Google Scholar 

  19. Raeissi, S. and Peters, C.J., Understanding temperature dependency of hydrogen solubility in ionic liquids, including experimental data in [bmim][Tf2N], AIChE J., 2012, vol. 58, p. 3553.

    Article  CAS  Google Scholar 

  20. Jacquemin, J., Husson, P., Majer, V., and Gomes, M.F.C., Influence of the cation on the solubility of CO2 and H2 in ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion, J. Solution Chem., 2007, vol. 36, p. 967.

    Article  CAS  Google Scholar 

  21. Jacquemin, J., Husson, P., Majer, V., Padua, A.A.H., and Gomes, M.F.C., Thermophysical properties, low pressure solubilities and thermodynamics of solvation of carbon dioxide and hydrogen in two ionic liquids based on the alkylsulfate anion, Green Chem., 2008, vol. 10, p. 944.

    Article  CAS  Google Scholar 

  22. Baltus, R.E., Culbertson, B.H., Dai, S., Luo, H.M., and DePaoli, D.W., Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance, J. Phys. Chem. B, 2004, vol. 108, p. 721.

    Article  CAS  Google Scholar 

  23. Zhang, S.J., Yuan, X.L., Chen, Y., and Zhang, X.P., Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures, J. Chem. Eng. Data, 2005, vol. 50, p. 1582.

    Article  CAS  Google Scholar 

  24. Yuan, X.L., Zhang, S.J., Chen, Y.H., Lu, X.M., Dai, W.B., and Mori, R., Solubilities of gases in 1,1,3,3-tetramethylguanidium lactate at elevated pressures, J. Chem. Eng. Data, 2006, vol. 51, p. 645.

    Article  CAS  Google Scholar 

  25. Muldoon, M.J., Aki, S.N.V.K., Anderson, J.L., Dixon, J.K., and Brennecke, J.F., Improving carbon dioxide solubility in ionic liquids, J. Phys. Chem. B, 2007, vol. 111, p. 9001.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, Y.S., Choi, W.Y., Jang, J.H., Yoo, K.P., and Lee, C.S., Solubility measurement and prediction of carbon dioxide in ionic liquids, Fluid Phase Equilib., 2005, vols. 228–229, p. 439.

    Article  CAS  Google Scholar 

  27. Kim, Y.S., Jang, J.H., Lim, B.D., Kang, J.W., and Lee, C.S., Solubility of mixed gases containing carbon dioxide in ionic liquids: Measurements and predictions, Fluid Phase Equilib., 2007, vol. 256, p. 70.

    Article  CAS  Google Scholar 

  28. Pitzer, K.S., Thermodynamics of electrolytes. l. Theoretical basis and general equations, J. Phys. Chem., 1973, vol. 77, p. 268.

    Article  CAS  Google Scholar 

  29. Soriano, A.N., Doma, Jr B.T., Li, M.H., Solubility of carbon dioxide in 1-ethyl-3-methylimidazolium tetrafluoroborate, J. Chem. Eng. Data, 2008, vol. 53, p. 2550.

    Article  CAS  Google Scholar 

  30. Soriano, A.N., Doma, B.T., Jr., and Li, M.H., Solubility of carbon dioxide in 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate, J. Chem. Thermodyn., 2008, vol. 40, p. 1654.

    Article  CAS  Google Scholar 

  31. Soriano, A.N., Doma, B.T., Jr., and Li, M.H., Carbon dioxide solubility in some ionic liquids at moderate pressures, J. Taiwan Inst. Chem. Eng., 2009, vol. 40, p. 387.

    Article  CAS  Google Scholar 

  32. Soriano, A.N., Doma, B.T., Jr., and Li, M.H., Carbon dioxide solubility in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, J. Chem. Thermodyn., 2009, vol. 41, p. 525.

    Article  CAS  Google Scholar 

  33. Fu, D., Sun, X., Pu, J., and Zhao, S., Effect of water content on the solubility of CO2 in the ionic liquid [bmim][PF6], J. Chem. Eng. Data, 2006, vol. 51, p. 371.

    Article  CAS  Google Scholar 

  34. Kumełan, J., Kamps, A.P., Tuma, D., and Maurer, G., Solubility of the single gases methane and xenon in the ionic liquid [hmim][Tf2N], Ind. Eng. Chem. Res., 2007, vol. 46, p. 8236.

    Article  CAS  Google Scholar 

  35. Huang, J., Riisager, A., Wasserscheid, P., and Fehrmann, R., Reversible physical absorption of SO2 by ionic liquids, Chem. Commun., 2006, vol. 38, p. 4027.

    Article  CAS  Google Scholar 

  36. Berger, A., de Souza, R.F., Delgado, M.R., and Dupont, J., Ionic liquid-phase asymmetric catalytic hydrogenation: Hydrogen concentration effects on enantioselectivity, Tetrahedron: Asymmetry, 2001, vol. 12, p. 1825.

    Article  CAS  Google Scholar 

  37. Zhang, J., Zhang, Q., Qiao, B., and Deng, Y., Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography, J. Chem. Eng. Data, 2007, vol. 52, p. 2277.

    Article  CAS  Google Scholar 

  38. Hou, Y. and and Baltus, R.E., Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method, Ind. Eng. Chem. Res., 2007, vol. 46, p. 8166.

    Article  CAS  Google Scholar 

  39. Dyson, P.J., Laurenczy, G., Ohlin, C.A., Vallance, J., and Welton, T., Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation, Chem. Commun., 2003, vol. 19, p. 2418.

    Article  Google Scholar 

  40. Sharma, A., Julcour, C., Kelkar, A.A., Deshpande, R.M., and Delmas, H., Mass transfer and solubility of CO and H2 ionic liquid case of [Bmim][PF6] with gas-inducing stirrer reactor, Ind. Eng. Chem. Res., 2009, vol. 48, p. 4075.

    Article  CAS  Google Scholar 

  41. Liu, X.M., Zhang, S.J., Wu, G.W., Yuan, X.L., and Yao, X.Q., New force field for molecular simulation of guanidinium-based ionic liquids, J. Phys. Chem. B, 2006, vol. 110, p. 12062.

    Article  CAS  PubMed  Google Scholar 

  42. Hanke, C.G., Atamas, N.A., and Lynden-Bell, R.M., Solvation of small molecules in ionic liquids: A simulation study, Green Chem., 2002, vol. 4, p. 107.

    Article  CAS  Google Scholar 

  43. Xue, Z.M., Zhang, Z.F., Han, J., Chen, Y., and Mu, T.C., Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazoliumcation and taurine anion, Int. J. Greenhouse Gas Control, 2001, vol. 5, p. 628.

    Article  CAS  Google Scholar 

  44. Jalili, A.H., Safavi, M., Ghotbi, C., Mehdizadeh, A., Hosseini-Jenab, M., and Taghikhani, V., Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide, J. Phys. Chem. B, 2012, vol. 116, p. 2758.

    Article  CAS  PubMed  Google Scholar 

  45. Safavi, M., Ghotbi, C., Taghikhani, V., Jalili, A.H., and Mehdizadeh, A., Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modeling, J. Chem. Thermodyn., 2013, vol. 65, p. 220.

    Article  CAS  Google Scholar 

  46. Sakhaeinia, H., Taghikhani, V., Jalili, A.H., Mehdizadeh, A., and Safekordi, A.A., Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions, Fluid Phase Equilib., 2010, vol. 298, p. 303.

    Article  CAS  Google Scholar 

  47. Sakhaeinia, H., Jalili, A.H., Taghikhani, V., and Safekordi, A.A., Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ([emim][Tf2N]), J. Chem. Eng. Data, 2010, vol. 55, p. 5839.

    Article  CAS  Google Scholar 

  48. Jalili, A.H., Shokouhi, M., Maurer, G., and Hosseini-Jenab, M., Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, J. Chem. Thermodyn., 2013, vol. 67, p. 55.

    Article  CAS  Google Scholar 

  49. Shokouhi, M., Adibi, M., Jalili, A.H., Hosseini-Jenab, M., and Mehdizadeh, A., Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, J. Chem. Eng. Data, 2010, vol. 55, p. 1663.

    Article  CAS  Google Scholar 

  50. Jalili, A.H., Mehdizadeh, A., Shokouhi, M., Ahmadi, A.N., and Fateminassab, F., Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate, J. Chem. Thermodyn., 2010, vol. 42, p. 1298.

    Article  CAS  Google Scholar 

  51. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., et al., Gaussian 03, Revision C.02, Wallingford, CT: Gaussian, 2004.

  52. Lopes, J.N.C., Desechamps, J., and Padua, A.A.H., Modeling ionic liquids using a systematic all-atom force field, J. Phys. Chem. B, 2004, vol. 108, p. 2038.

    Article  CAS  Google Scholar 

  53. Lopes, J.N.C. and Padua, A.A.H., Molecular force field for ionic liquids composed of triflate or bistriflyimide anions, J. Phys. Chem. B, 2004, vol. 108, p. 16893.

    Article  CAS  Google Scholar 

  54. Shimizu, K., Almantariotis, D., Gomes, M.F.C., Padua, A.A.H., and Lopes, J.N.C., Molecular force field for ionic liquids V: Hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fiouroalkylimidazoliumcations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions, J. Phys. Chem. B, 2010, vol. 114, p. 3592.

    Article  CAS  PubMed  Google Scholar 

  55. Ponder, J.W., TINKER: Software tools for molecular design, 7.0 ed., Saint Louis: Washington University School of Medicine, 2007.

    Google Scholar 

  56. Ye, C. and Shreeve, J.M., Rapid and accurate estimation of densities of room-temperature ionic liquids and salts, J. Phys. Chem. A, 2007, vol. 111, p. 1456.

    Article  CAS  PubMed  Google Scholar 

  57. Nematpour, M., Jalili, A.H., Ghotbi, C., Rashtchian, D., Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, J. Nat. Gas Sci. Eng., 2014, vol. 30, p. 583.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Sakhaeinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhaeinia, H., Zare-Neyestanak, E. & Shokouhi, M. Evaluation of Anion Effect on the Solubility of Hydrogen Sulfide in Ionic Liquids Using Molecular Dynamics Simulation. Theor Found Chem Eng 54, 949–960 (2020). https://doi.org/10.1134/S0040579520050413

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520050413

Keywords:

Navigation