Skip to main content
Log in

Growth of Titanium Oxide Nanostructures on γ-Аl2О3 by Atomic Layer Deposition

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents results on control over the surface composition, surface structure, and pore texture of core/shell materials, as exemplified by the growth of conformal titanium oxide nanocoatings on γ‑Аl2О3 by atomic layer deposition via sequential and alternating exposure of the alumina to TiCl4 and H2O vapor. The alumina surface and growing titanium oxide layer are shown to influence the characteristics of the forming two-phase material. Increasing the amount of titanium via an increase in the number of deposition cycles leads to a systematic decrease in specific surface area, pore volume, and pore size, which points to conformal pore filling in the starting matrix by a titanium oxide layer. The composition and structure of the titanium oxide coating are influenced by its thickness and the nature of the starting matrix. The coordination state of the titanium oxide in monolayer structures is characteristic of the titanium oxide polyhedra in aluminum titanate. As the distance from the top monolayer to the surface of the matrix (coating thickness) increases, an X-ray amorphous layer is formed in which the oxygen coordination environment of the titanium is similar to that in an anatase-like phase of titanium dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Jung, C.-K., Bae, I.-S., Song, Y.-H., Kim, T.-K., Vlcek, J., Musil, J., and Boo, J.-H., Synthesis of TiO2 photocatalyst and study on their improvement technology of photocatalytic activity, Surf. Coat. Technol., 2005, vol. 200, nos. 1–4, pp. 534–538.https://doi.org/10.1016/j.surfcoat.2005.02.106

    Article  CAS  Google Scholar 

  2. Agafonov, A.V. and Vinogradov, A.V., Catalytically active materials based on titanium dioxide: ways of enhancement of photocatalytic activity, High Energy Chem., 2008, vol. 42, no. 7, pp. 79–81.https://doi.org/10.1134/S0018143908070242

    Article  CAS  Google Scholar 

  3. Gaya, U.I. and Abdullah, A.H., Heterogeneous photocatalytic degradation of organic contaminations over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol. C, 2008, vol. 9, no. 1, pp. 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  4. Feng, G., Liu, S., Xiu, Z., Zhang, Y., Yu, J., Chen, Y., Wang, P., and Yu, X., Visible light photocatalytic activities of TiO2 nanocrystals doped with upconversion luminescence agent, J. Phys. Chem. C, 2008, vol. 112, no. 35, pp. 13692–13699.https://doi.org/10.1021/jp802476t

    Article  CAS  Google Scholar 

  5. Sintez, svoistva i primenenie dielektrikov s vysokoi dielektricheskoi pronitsaemost’yu v kremnievykh priborakh (High-Permittivity Dielectrics: Synthesis, Properties, and Application in Silicon Devices), Aseev, A.L. and Gritsenko, V.A., Eds., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2011.

    Google Scholar 

  6. Grätzel, M., Mesoporous oxide junctions and nanostructured solar cells, Curr. Opin. Colloid Interface Sci., 1999, vol. 4, no. 4, pp. 314–321.https://doi.org/10.1016/S1359-0294(99)90013-4

    Article  Google Scholar 

  7. Hamann, T.W., Martinson, A.B., Elam, J.W., Pellin, M.J., and Hupp, J.T., Atomic layer deposition of TiO2 on aerogel templates: new photoanodes for dye-sensitized solar cells, J. Phys. Chem. C, 2008, vol. 112, no. 27, pp. 10303–10307.https://doi.org/10.1021/jp802216p

    Article  CAS  Google Scholar 

  8. Holgado, M.J., Inigo, A.C., and Rives, V., Surface texture properties of TiO2 (rutile) pigments, J. Mater. Sci. Lett., 1995, vol. 14, no. 14, pp. 991–993.https://doi.org/10.1007/BF00274628

    Article  CAS  Google Scholar 

  9. Foger, K. and Anderson, J.D., Thermally stable SMSI supports: iridium supported on TiO2–Al2O3 and on Ce-stabilized anatase, Appl. Catal., 1986, vol. 23, no. 1, pp. 139–155.https://doi.org/10.1016/S0166-9834(00)81458-X

    Article  CAS  Google Scholar 

  10. Zhaobin, W., Qin, X., Xiexian, G., Sham, E.L., Grange, P., and Delmon, B., Titania-modified hydrodesulphurization catalysts: I. Effect of preparation techniques on morphology and properties of TiO2–Al2O3 carrier, Appl. Catal., 1990, vol. 63, no. 1, pp. 305–317.https://doi.org/10.1016/S0166-9834(00)81721-2

    Article  Google Scholar 

  11. Ding, Z., Hu, X., Yue, P.L., Lu, G.Q., and Greenfield, P.F., Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition, Catal. Today, 2001, vol. 68, nos. 1–3, pp. 173–182.https://doi.org/10.1016/S0920-5861(01)00298-X

    Article  Google Scholar 

  12. Artem’ev, Yu.M. and Ryabchuk, V.K., Vvedenie v geterogennyi fotokataliz (Introduction to Heterogeneous Photocatalysis), St. Petersburg.: S.-Peterburg. Univ., 1999.

  13. Ding, Z., Lu, G.Q., and Greenfield, P.F., Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water, J. Phys. Chem. B, 2000, vol. 104, no. 19, pp. 4815–4820.https://doi.org/10.1021/jp993819b

    Article  CAS  Google Scholar 

  14. Kawahara, T., Ozawa, T., Iwasaki, M., Tada, H., and Ito, S., Photocatalytic activity of rutile–anatase coupled TiO2 particles prepared by a dissolution–reprecipitation method, J. Colloid Interface Sci., 2003, vol. 267, no. 2, pp. 377–381.https://doi.org/10.1016/S0021-9797(03)00755-0

    Article  CAS  PubMed  Google Scholar 

  15. Jimmy, C.Y., Yu, J., Ho, W., and Zhang, L., Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation, Chem. Commun., 2001, no. 19, pp. 1942–1943.https://doi.org/10.1039/B105471F

  16. Tian, G., Fu, H., Jing, L., and Tian, C., Synthesis and photocatalytic activity of stable nanocrystalline TiO2 with high crystallinity and large surface area, J. Hazard. Mater., 2009, vol. 161, nos. 2–3, pp. 1122–1130.https://doi.org/10.1016/j.jhazmat.2008.04.065

    Article  CAS  PubMed  Google Scholar 

  17. Cameron, M.A., Gartland, I.P., Smith, J.A., Diaz, S.F., and George, S.M., Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes: pore reduction and effect of surface species on gas transport, Langmuir, 2000, vol. 16, no. 19, pp. 7435–7444.https://doi.org/10.1021/la9916981

    Article  CAS  Google Scholar 

  18. Aarik, J., Aidla, A., Mandar, H., Uustare, T., Schuisky, M., and Harsta, A., Atomic layer growth of epitaxial TiO2 thin films from TiCl4 and H2O on α-Al2O3 substrates, J. Cryst. Growth, 2002, vol. 242, nos. 1–2, pp. 189–198.https://doi.org/10.1016/S0022-0248(02)01426-4

    Article  CAS  Google Scholar 

  19. Malygin, A.A., Malkov, A.A., and Sosnov, E.A., Structural–dimensional effects and their application in the “core‑nanoshell” systems synthesized by the molecular layering, Russ. Chem. Bull., 2017, vol. 66, no. 11, pp. 1939–1962.https://doi.org/10.1007/s11172-017-1971-9

    Article  CAS  Google Scholar 

  20. Zhilyaeva, N.A., Ermilova, M.M., Orekhova, N.V., Basov, N.L., Mikhailovskii, S.V., Malygin, A.A., and Yaroslavtsev, A.B., Oxidative dehydrogenation of ethane on oxide materials in a pulsed microcatalytic and a membrane reactor, Inorg. Mater., 2018, vol. 54, no. 11, pp. 1136–1143.https://doi.org/10.1134/S002016851811016X

    Article  CAS  Google Scholar 

  21. Xiong, G., Elam, J.W., Feng, H., Han, C.Y., Wang, H.-H., Iton, L.E., Curtiss, L.A., Pellin, M.J., Kung, M., Kung, H., and Stair, P.C., Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes, J. Phys. Chem. B, 2005, vol. 109, no. 29, pp. 14059–14063.https://doi.org/10.1021/jp0503415

    Article  CAS  PubMed  Google Scholar 

  22. Mokrushin, A.S., Simonenko, E.P., Simonenko, N.P., Akkuleva, K.T., Antipov, V.V., Zaharova, N.V., Malygin, A.A., Bukunov, K.A., Sevastyanov, V.G., and Kuznetsov, N.T., Oxygen detection using nanostructured TiO2 thin films obtained by the molecular layering method, Appl. Surf. Sci., 2019, vol. 463, pp. 197–202.https://doi.org/10.1016/j.apsusc.2018.08.208

    Article  CAS  Google Scholar 

  23. Lippens, B.C. and Steggerda J.J., Active alumina, Physical and Chemical Aspects of Adsorbents and Catalysts, Linsen, B.G., Ed., London: Academic, 1970, pp. 171–212.

    Google Scholar 

  24. Chukin, G.D., Stroenie oksida alyuminiya i katalizatorov gidroobesserivaniya. Mekhanizmy reaktsii (Structure of Aluminum Oxide and Catalysts for Hydrodesulfurization: Reaction Mechanisms), Moscow: Printa, 2010.

  25. Malkov, A.A., Ishchenko, O.M., Koshtyal, Yu.M., Vasil’eva, K.L., Abyzov, A.M., and Malygin, A.A., The effect of temperature on the formation of titanium dioxide structures on γ-Al2O3 surface, Russ. J. Appl. Chem., 2010, vol. 83, no. 9, pp. 1520–1524.https://doi.org/10.1134/S1070427210090028

    Article  CAS  Google Scholar 

  26. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Effect of chemical and technological factors on the composition of products formed by reaction of TiCl4 with silica surface, Russ. J. Appl. Chem., 2000, vol. 73, no. 7, pp. 1136–1141.

    Google Scholar 

  27. Babko, A.N. and Pilipenko, A.G., Kolorimetricheskii analiz (Colorimetric Analysis), Moscow: Khimiya, 1965.

  28. Kruk, M., Jaroniec, M., Ko, C.H., and Ryoo, R., Characterization of the porous structure of SBA-15, Chem. Mater., 2000, vol. 12, no. 7, pp. 1961–1968.https://doi.org/10.1021/cm000164e

    Article  CAS  Google Scholar 

  29. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., A new approach to processing electronic diffuse reflectance spectra, Russ. J. Phys. Chem., 2009, vol. 83, no. 4, pp. 642–648.https://doi.org/10.1134/S0036024409040219

    Article  CAS  Google Scholar 

  30. Koshtyal, Yu.M., Malkov, A.A., and Malygin, A.A., Temperature influence on the formation of titanium-oxide structures on finely porous silica, Russ. J. Gen. Chem., 2011, vol. 81, no. 1, pp. 41–48.https://doi.org/10.1134/S1070363211010075

    Article  CAS  Google Scholar 

  31. Yavorskii, B.M. Detlaf, A.A., and Lebedev, A.K., Spravochnik po fizike (Handbook of Physics), Moscow: Oniks, 2006.

    Google Scholar 

  32. Winkler, E.R., Sarver, J.F., and Cutler, I.B., Solid solution of titanium dioxide in aluminum oxide, J. Am. Ceram. Soc., 1966, vol. 49, no. 12, pp. 634–637.https://doi.org/10.1111/j.1151-2916.1966.tb13189.x

    Article  CAS  Google Scholar 

  33. Aleskovskii, V.B., The nature of solid chemical-compounds, J. Appl. Chem. USSR, 1982, vol. 55, no. 4, pp. 662–666.

    Google Scholar 

  34. Schwarz, O., Habel, D., Ovsitser, O., Kondratenko, E.V., Hess, C., Schomacker, R., and Schubert, H., Impact of preparation method on physico-chemical and catalytic properties of VOx/γ-Al2O3 materials, J. Mol. Catal. A: Chem., 2008, vol. 293, nos. 1–2, pp. 45–52.https://doi.org/10.1016/j.molcata.2008.07.009

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this research, we used equipment at the Nanomaterials Chemical Assembly Shared Research Facilities Center, St. Petersburg State Institute of Technology (Technical University).

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, unique project identifier RFMEFI60719X0328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Malkov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkov, A.A., Kukushkina, Y.A., Sosnov, E.A. et al. Growth of Titanium Oxide Nanostructures on γ-Аl2О3 by Atomic Layer Deposition. Inorg Mater 56, 1234–1241 (2020). https://doi.org/10.1134/S0020168520120122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520120122

Keywords:

Navigation