Skip to main content
Log in

Synthesis of the Ti3SiC2 MAX Phase via Combustion in the TiO2–Mg–Si–C System

  • Published:
Inorganic Materials Aims and scope

Abstract—

Technologically viable principles have been developed for the preparation of the MAX phase Ti3SiC2 by self-propagating high-temperature synthesis (SHS) with a reduction step, using titanium dioxide. We have studied the influence of synthesis conditions (starting-mixture composition and ratio of reactants) on the composition, structure, and particle size of the Ti3SiC2 powder. The results demonstrate that the addition of 10 to 20 wt % excess magnesium to the starting mixture leads to a decrease in the percentage of the TiSi2 and Ti5Si3 silicides in the Ti3SiC2 powder (from 8 to 5 wt %), with the smallest percentage of titanium carbide corresponding to a 10% excess of magnesium in the starting mixture. Raising the amount of silicon in the starting mixture by 10% leads to a decrease in the percentages of the TiSi2 and Ti5Si3 silicides and titanium carbide in the Ti3SiC2 powder. The addition of sodium chloride and magnesium perchlorate to the starting mixture has been shown to influence the percentages of the TiSi2 and Ti5Si3 silicides and TiC in the Ti3SiC2 powder. We have optimized conditions for the synthesis of powder containing 89.1 wt % Ti3SiC2. The powders prepared by SHS with a reduction step consist of agglomerates of layered particles ranging in size from 130 to 770 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Jeitschko, W., Nowotny, H., and Benesovsky, F., Die Kristallstruktur von Ti3SiC2 – ein neuer Komplexcarbid-Typ, Monatsh. Chem., 1967, vol. 98, no. 2, pp. 329–337.

    Article  CAS  Google Scholar 

  2. Barnes, L.A., Dietz Rago, N.L., and Leibowitz, L., Corrosion of ternary carbides by molten lead, J. Nucl. Mater., 2008, vol. 373, nos. 1–3, pp. 424–428.https://doi.org/10.1016/j.jnucmat.2007.04.054

    Article  CAS  Google Scholar 

  3. Utili, M., Agostini, M., Coccoluto, G., and Lorenzini, E., Ti3SiC2 as a candidate material for lead cooled fast reactor, Nucl. Eng. Des., 2011, vol. 241, no. 5, pp. 1295–1300.https://doi.org/10.1016/j.nucengdes.2010.07.038

    Article  CAS  Google Scholar 

  4. Heinzel, A., Muller, G., and Weisenburger, A., Compatibility of Ti3SiC2 with liquid Pb and PbBi containing oxygen, J. Nucl. Mater., 2009, vol. 392, no. 2, pp. 255–258.https://doi.org/10.1016/j.jnucmat.2009.03.004

    Article  CAS  Google Scholar 

  5. Nappe, J., Grosseau, P., Audubert, F., Guilhot, B., Beauvy, M., Benabdesselam, M., and Monnet, I., Damages induced by heavy ions in titanium silicon carbide: effects of nuclear and electronic interactions at room temperature, J. Nucl. Mater., 2009, vol. 385, no. 2, pp. 304–307.https://doi.org/10.1016/j.jnucmat.2008.12.018

    Article  CAS  Google Scholar 

  6. Le Flem, M., Liu, X., Doriot, S., and Cozzika, T., Irradiation damage in Ti3(Si,Al)C2: a TEM investigation, Int. J. Appl. Ceram. Technol., 2010, vol. 7, no. 6, pp. 766–775.https://doi.org/10.1111/j.1744-7402.2010.02523.x

    Article  CAS  Google Scholar 

  7. Whittle, K.R., Blackford, M.G., Aughterson, R.D., Moricca, S., Lumpkin, G.R., Riley, D.P., and Zaluzec, N.J., Radiation tolerance of Mn + 1AXn phases, Ti3AlC2 and Ti3SiC2, Acta. Mater., 2010, vol. 58, no. 13, pp. 4362–4368.https://doi.org/10.1016/j.actamat.2010.04.029

    Article  CAS  Google Scholar 

  8. Jovic, V.D. and Barsoum, M.W., US Patent 7001494, 2006.

  9. Tuller, H.L., Spears, M.A., and Mlcak, R., US Patent 6544674, 2003.

  10. Barsoum, M.W. and El-Raghy, T., Synthesis and characterization of a remarkable ceramic Ti3SiC2, J. Am. Ceram. Soc., 1996, vol. 79, no. 7, pp. 1953–1956.https://doi.org/10.1111/j.1151-2916.1996.tb08018.x

    Article  CAS  Google Scholar 

  11. Luo, Y.-M., Pan, W., Li, S., and Chen, J., Synthesis and mechanical properties of in-situ hot pressed Ti3SiC2 polycrystals, Ceram. Int., 2002, vol. 28, no. 2, pp. 227–230.https://doi.org/10.1016/S0272-8842(01)00083-9

    Article  CAS  Google Scholar 

  12. Zhang, Z.F., Sun, Z.M., Hashimoto, H., and Abe, T., Effects of sintering temperature and Si content on the purity of Ti3SiC2 synthesized from Ti/Si/TiC powders, J. Alloys Compd., 2003, vol. 352, nos. 1–2, pp. 283–289.https://doi.org/10.1016/S0925-8388(02)01171-4

    Article  CAS  Google Scholar 

  13. Zhang, Z.F., Sun, Z.M., and Hashimoto, H., Rapid synthesis of ternary carbide Ti3SiC2 through pulse-discharge sintering technique from Ti/Si/TiC powders, Metall. Mater. Trans. A, 2002, vol. 33, no. 11, pp. 3321–3328.https://doi.org/10.1007/s11661-002-0320-1

    Article  Google Scholar 

  14. Zhang, Z.F., Sun, Z.M., Hashimoto, H., and Abe, T., A new synthesis reaction of Ti3SiC2 through pulse discharge sintering Ti/SiC/TiC powder, Scr. Mater., 2001, vol. 45, no. 12, pp. 1461–1467. https://doi.org/https://doi.org/10.1016/S1359-6462(01)01184-8

    Article  CAS  Google Scholar 

  15. Gao, N.F., Li, J.T., Zhang, D., and Miyamoto, Y., Rapid synthesis of dense Ti3SiC2 by spark plasma sintering, J. Eur. Ceram. Soc., 2002, vol. 22, no. 13, pp. 2365–2370.https://doi.org/10.1016/S0955-2219(02)00021-3

    Article  CAS  Google Scholar 

  16. Vadchenko, S.G., Sytschev, A.E., Kovalev, D.Yu., Shukin, A.S., and Belikova, A.F., SHS of MAX compounds in the Ti–Si–C system: influence of mechanical activation, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 3, pp. 141–144.https://doi.org/10.3103/S106138621403011X

    Article  CAS  Google Scholar 

  17. Pampuch, R., Lis, J., Stobierski, L., and Tymkiewicz, M., Solid combustion synthesis of Ti3SiC2, J. Eur. Ceram. Soc., 1989, vol. 5, no. 5, pp. 283–287.https://doi.org/10.1016/0955-2219(89)90022-8

    Article  CAS  Google Scholar 

  18. Meng, F., Liang, B., and Wang, M., Investigation of formation mechanism of Ti3SiC2 by self-propagating high-temperature synthesis, Int. J. Refract. Met. Hard Mater., 2013, vol. 41, pp. 152–161.https://doi.org/10.1016/j.ijrmhm.2013.03.005

    Article  CAS  Google Scholar 

  19. Riley, D.P., Kisi, E.H., and Phelan, D., SHS of Ti3SiC2: ignition temperature depression by mechanical activation, J. Eur. Ceram. Soc., 2006, vol. 26, no. 6, pp. 1051–1058.https://doi.org/10.1016/j.jeurceramsoc.2004.11.021

    Article  CAS  Google Scholar 

  20. Lis, J., Miyamoto, Y., Pampuch, R., and Tanihata, K., Ti3SiC2-based materials prepared by HIP–SHS techniques, Mater. Lett., 1995, vol. 22, nos. 3–4, pp. 163–168.https://doi.org/10.1016/0167-577X(94)00246-0

    Article  CAS  Google Scholar 

  21. Gao, F., Miyamoto, Y., and Zhang, D., Dense Ti3SiC2 prepared by reactive HIP, J. Mater. Sci., 1999, vol. 34, no. 18, pp. 4385–4392.https://doi.org/10.1023/A:1004664500254

    Article  CAS  Google Scholar 

  22. Racault, C., Langlais, F., and Naslain, R., Solid-state synthesis and characterization of the ternary phase Ti3SiC2, J. Mater. Sci., 1994, vol. 29, no. 13, pp. 3384–3392.https://doi.org/10.1007/BF00352037

    Article  CAS  Google Scholar 

  23. Sato, F., Li, J.F., and Watanabe, R., Reaction synthesis of Ti3SiC2 from mixture of elemental powders, Mater. Trans. JIM, 2000, vol. 4, no. 5, pp. 605–608.https://doi.org/10.2320/matertrans1989.41.605

    Article  Google Scholar 

  24. Li, J.F., Matsuki, T., and Watanabe, R., Combustion reaction during mechanical alloying synthesis of Ti3SiC2 ceramics from 3Ti/Si/2C powder mixture, J. Am. Ceram. Soc., 2005, vol. 88, no. 5, pp. 1318–1320. https://doi.org/https://doi.org/10.1111/j.1551-2916. 2005.00179.x

    Article  CAS  Google Scholar 

  25. Li, S.B., Zhai, H.X., Zhou, Y., and Zhang, Z.L., Synthesis of Ti3SiC2 powders by mechanically activated sintering of elemental powders of Ti, Si and C, Mater. Sci. Eng., A, 2005, vol. 407, nos. 1–2, pp. 315–321.https://doi.org/10.1016/j.msea.2005.07.043

    Article  CAS  Google Scholar 

  26. Nickle, J.J., Schweitzer, K.K., and Luxenberg, P., Gasphasenabscheidung im Systeme Ti–C–Si, J. Less-Common Met., 1972, vol. 26, no. 3, pp. 335–353.https://doi.org/10.1016/0022-5088(72)90083-5

    Article  Google Scholar 

  27. Goto, T. and Hirai, T., Chemically vapor deposited Ti3SiC2, Mater. Res. Bull., 1987, vol. 22, no. 9, pp. 1195–1201.https://doi.org/10.1016/0025-5408(87)90128-0

    Article  CAS  Google Scholar 

  28. Emmerlich, J., Hogberg, H., Sasvari, S., Persson, P.O.A., Hultman, L., Palmquist, J.P., Jansson, U., Molina-Aldareguia, J.M., and Czigany, Z., Growth of Ti3SiC2 thin films by elemental target magnetron sputtering, J. Appl. Phys., 2004, vol. 96, no. 9, pp. 4817–4823.https://doi.org/10.1063/1.1790571

    Article  CAS  Google Scholar 

  29. Arunajatesan, S. and Carim, A.H., Synthesis of titanium silicon carbide, J. Am. Ceram. Soc., 1995, vol. 78, no. 3, pp. 667–672. https://doi.org/https://doi.org/10.1111/j.1151-2916. 1995.tb08230.x

    Article  CAS  Google Scholar 

  30. Istomina, E.I., Istomin, P.V., and Nadutkin, A.V., Preparation of Ti3SiC2 through reduction of titanium dioxide with silicon carbide, Inorg. Mater., 2016, vol. 52, no. 2, pp. 134–140.https://doi.org/10.1134/S0020168516020059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vershinnikov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershinnikov, V.I., Kovalev, D.Y. Synthesis of the Ti3SiC2 MAX Phase via Combustion in the TiO2–Mg–Si–C System. Inorg Mater 56, 1211–1216 (2020). https://doi.org/10.1134/S0020168520120171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520120171

Keywords:

Navigation