Skip to main content
Log in

Data-driven simulation for general-purpose multibody dynamics using Deep Neural Networks

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a machine learning-based simulation framework of general-purpose multibody dynamics (MBD). The aim of the framework is to construct a well-trained meta-model of MBD systems, based on a deep neural network (DNN). Since the main advantage of the meta-model is the enhancement of computational efficiency in returning solutions, the modeling would be beneficial for solving highly complex MBD problems in a short time. Furthermore, for dynamics problems, not only the accuracy but also the smoothness in time of motion solutions, such as displacement, velocity, and acceleration, are essential aspects to consider. We analyze and discuss the influence of training data structures on both aspects of solutions. As a result of the introduced approach, the meta-model provides motion estimation of system dynamics without solving an analytical equation of motion or a numerical solver. Numerical tests demonstrate the performance of the proposed meta-modeling for representing several MBD systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Agrawal, O.P., Shabana, A.A.: Dynamic analysis of multibody systems using component modes. Comput. Struct. 21(6), 1303–1312 (1985)

    Article  Google Scholar 

  2. Angeli, A., Naets, F., Desmet, W.: Data-driven model order reduction for real-time multibody simulations. In: The 5th Joint International Conference on Multibody System Dynamics, IMSD (2018)

    Google Scholar 

  3. Ansari, H., Tupy, M., Datar, M., Negrut, D.: Construction and Use of Surrogate Models for the Dynamic Analysis of Multibody Systems. SAE International by Columbia Univ. (2018)

  4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Besselink, B., Tabak, U., Lutowska, A., van de Wouw, N., Nijmeijer, H., Rixen, D.J., Hochstenbach, M.E., Schilders, W.H.A.: A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. J. Sound Vib. 332, 4403–4422 (2013)

    Article  Google Scholar 

  6. Blanco-Claraco, J.L., Torres-Moreno, J.L., Giménez-Fernández, A.: Multibody dynamic systems as Bayesian networks: applications to robust state estimation of mechanisms. Multibody Syst. Dyn. 34, 103–128 (2015)

    Article  MathSciNet  Google Scholar 

  7. Byravan, A., Fox, D.: SE3-nets: learning rigid body motion using deep neural networks. In: IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  8. Eldred, M., Giunta, A., Collis, S.: Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. AIAA, Washington (2004)

    Book  Google Scholar 

  9. Falomi, S., Malvezzi, M., Meli, E.: Multibody modeling of railway vehicles: innovative algorithms for the detection of wheel-rail contact points. Wear 271, 453–461 (2011)

    Article  Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Halloran, J.P., Erdemir, A., van den Bogert, A.J.: Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. J. Biomech. Eng. 131(1), 011014 (2009)

    Article  Google Scholar 

  12. Hinton, G.: Neural Networks for Machine Learning—Overview of mini-batch gradient descent (2012)

  13. Kim, S.S., Haug, E.J.: A recursive formulation for flexible multibody dynamics, part I: open-loop systems. Comput. Methods Appl. Mech. Eng. 71(3), 293–314 (1988)

    Article  Google Scholar 

  14. Kim, J.G., Han, J.B., Lee, H., Kim, S.S.: Flexible multibody dynamics using coordinate reduction improved by dynamic correction. Multibody Syst. Dyn. 42(4), 411–429 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980v9

  16. Kraft, S., Causse, J., Martinez, A.: Black-box modelling of nonlinear railway vehicle dynamics for track geometry assessment using neural networks. Int. J. Veh. Mech. Mobil. (2018). https://doi.org/10.1080/00423114.2018.1497186

    Article  Google Scholar 

  17. Lanz, O.: Approximate Bayesian multibody tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28, 9 (2006)

    Article  Google Scholar 

  18. Li, Y., Wu, J., Tedrake, R., Tenenbaum, J.B., Torralba, A.: Learning particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In: ICLR (2019)

    Google Scholar 

  19. Lin, Y-C., Haftka, R.T., Queipo, N.V., Fregly, B.J.: Surrogate articular contact models for computationally efficient multibody dynamic simulations. Med. Eng. Phys. 32(6), 584–594 (2010)

    Article  Google Scholar 

  20. Martin, T.P., Zaazaa, K.E., Whitten, B., Tajaddini, A.: Using a multibody dynamic simulation code with neural network technology to predict railroad vehicle-track interaction performance in real time. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences \(\&\) Computers and Information in Engineering Conference (2007)

    Google Scholar 

  21. Negrut, D., Qian, Z.G.P., Khude, N.: Building Gaussian process based metamodels using variable-fidelity experiments for dynamic. In: Analysis of Mechanical Systems, ASME International Mechanical Engineering Congress and Exposition, ASME (2007)

    Google Scholar 

  22. Pontes, F.J., Amorim, G.F., Balestrassi, P.P., Paiva, A.P., Ferreira, J.R.: Design of experiments and focused grid search for neural network parameter optimization. Neurocomputing 186, 22–34 (2016)

    Article  Google Scholar 

  23. Rewienski, M., White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22, 155–170 (2003)

    Article  Google Scholar 

  24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  25. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  26. Ting, J-A., Mistry, M., Peters, J., Schaal, S., Nakanishi, J.: A Bayesian approach to nonlinear parameter identification for rigid body dynamics. In: Robotics: Science and Systems II, pp. 247–254 (2007)

    Google Scholar 

  27. Tutsoy, O., Brown, M., Wang, H.: Reinforcement learning algorithm application and multi-body system design by using MapleSim and Modelica. Int. J. Adv. Mechatron. Syst., 650–655 (2012)

Download references

Acknowledgements

This research is supported by 2019 KyungHee University research program and Functionbay Inc., and the authors would like to acknowledge the support for Grzegorz Orzechowski from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie project No. 845600 (RealFlex).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hwan Choi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, HS., An, J., Han, S. et al. Data-driven simulation for general-purpose multibody dynamics using Deep Neural Networks. Multibody Syst Dyn 51, 419–454 (2021). https://doi.org/10.1007/s11044-020-09772-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09772-8

Keywords

Navigation