Skip to main content
Log in

Investigation of the Problems of Durability of Orthotropic Polygonal Plates under Broadband Acoustic Exposure Taking into Account the Effects of Radiation

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

The article considers the problems of calculating the durability of orthotropic polygonal plates, described in the framework of the Kirchhoff theory and subjected to acoustic action with a wide spectrum, taking into account the effects of sound re-emission. A hybrid numerical-analytical method for solving the problem is proposed, based on the determination of the eigenmodes and vibration frequencies of the plate using the finite element method (FEM) with the subsequent calculation of the moments of the spectral density of rms stresses using the 5th order Gaussian quadratures. The article calculates the durability of a polygonal orthotropic fiberglass plate using four different methods (intersection method, Kowalewski method, Bolotin method and Reicher method) with a diffuse distribution of the sound field over the plate surface and random broadband acoustic exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Miles, “On structural fatigue under random loading, ” J. Aeronaut. Sci. 21 (11), 753–762 (1954).

    Article  Google Scholar 

  2. A. Powell, “On the fatigue failure of structure due to the vibration excited by random pressure Fields,” J. Acoust. Soc. Am. 30, 1130–1135 (1958).

    Article  ADS  Google Scholar 

  3. B. L.Clarkson, “The design of structures to resist jet noise fatigue,” J. Roy. Aeronaut. Soc. 66 (662), 603–616 (1962).

    Article  Google Scholar 

  4. J. R. Ballentine, F. F. Rudder, J.T. Mathis, and H. E. Plumblee, Refinement of Sonic Fatigue Structural Design Criteria, AFFDL TR 67-156 (Wright-Patterson Air Force Base, Ohio, 1968).

    Book  Google Scholar 

  5. V. L. Bazhanov, I. I. Gol’denblat, V. A. Kopnov, et al., Plates and Shells of Glass Fiber Reinforced Plastics (Vysshaya Shkola, Moscow, 1970) [in Russian].

    Google Scholar 

  6. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarsky, Introduction to Statistical Radio Physics 3. Elements of Random Fields (Springer, Berlin, 1989).

    Google Scholar 

  7. A. L. Medvedskiy, V. F. Kop’ev, N. N. Ostrikov, and S. L. Denisov, “Influence of acoustic radiation of large-scale coherent structures such as waves of instability on the response and durability of polygonal orthotropic plates,” in Proceedings of XII All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics, Ufa, 2019, Vol. 3: Mechanics of a Deformable Solid (Bash. Gos. Univ., Ufa, 2019), pp. 23–25.

  8. D. D. Plakhov, “Sound field of a multispan plate”, Sov. Phys. Acoust. 13 (4), 506–510 (1968).

    Google Scholar 

  9. E. L. Shenderov, Wave Problems in Hydroacoustics (Sudostroenie, Leningrad, 1972) [in Russian] .

    Google Scholar 

  10. Yung-Li Lee, Jwo Pan, R. B. Hathaway, and M. E. Barkley, Fatigue Testing and Analysis (Theory and Practice) (Elsevier, 2005).

    Google Scholar 

  11. V. V. Bolotin, Random Vibration of Elastic Systems (Springer, 1984).

    Book  Google Scholar 

  12. V. L. Raikher, “Spectral summation hypothesis and its application to determine the fatigue life under random loading effect,” Trudy TsAGI, 1134, 1–40 (1969).

    Google Scholar 

  13. A. G. Munin and V. E. Kvitka, Aviation Acoustics (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  14. A. G.Gorshkov, A. L. Medvedskii, L. N. Rabinskii, and D. V. Tarlakovskii, Waves in Continuous Mediums (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  15. O. C.Zienkiewicz and R. L.Taylor, The Finite Element Method, Vol. 2: Solid Mechanics, 5nd ed. (Butterworth/Heinemann, 2000).

    MATH  Google Scholar 

  16. J. H. Mathews and K. D. Fink, Numerical Methods with MATLAB (Prentice Hall, 2004).

    Google Scholar 

  17. A. E. Belkin and S. S. Gavryushin, Finite Element Analysis of Plates: Handbook (MGTU, Moscow, 2008) [in Russian].

    Google Scholar 

  18. S. L. Denisov and A. L.Medvedskiy, “Numerical-analytical method to calculate plate response and durability under broadband acoustic loads and its verification,” Trudy MAI, 91 (2016), http://trudymai.ru/published.php?ID=75542&eng=N.

  19. A. N. Movaghar and G. I. L’vov, “Experimental investigation of the fatigue strength of STÉF-1 fiberglass composite,” Strength Mater. 44 (2), 218–225 (2012).

    Article  Google Scholar 

Download references

Funding

The work was supported by the RFBR grant (project no. 18-08-01153 А).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. L. Denisov or A. L. Medvedsky.

Additional information

Translated by I. K. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, S.L., Kopyev, V.F., Medvedsky, A.L. et al. Investigation of the Problems of Durability of Orthotropic Polygonal Plates under Broadband Acoustic Exposure Taking into Account the Effects of Radiation. Mech. Solids 55, 716–727 (2020). https://doi.org/10.3103/S0025654420300019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420300019

Keywords:

Navigation