Skip to main content
Log in

The low-energy electron band structure of a two-dimensional Dirac nodal-line semimetal grown on a silicon surface

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The low-energy electron band structure of Cu\(_2\)Si on Si(111) has been investigated using angle-resolved photoemission spectroscopy. Cu\(_2\)Si exhibits two Dirac nodal-lines, stemming from the crossing of one electron-pocket with two hole-pockets, that are protected by mirror reflection symmetry. When Cu\(_2\)Si is placed on Si(111), the hole-pockets and their satellite bands due to the quasi-\(5\times 5\) periodicity are clearly observed whereas the electron-pocket is observed with very weak spectral intensity. Interestingly, close to the Fermi energy, the hole-pockets exhibit almost linear energy-momentum dispersion when their spectral width is also linearly proportional to energy. These findings indicate that Cu\(_2\)Si on Si(111) can host Dirac nodal-line fermions, of which low-energy excitations might depart from those of the conventional Fermi liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A.A. Burkov, M.D. Hook, L. Balents, Phys. Rev. B 84, 235126 (2011)

    Article  ADS  Google Scholar 

  2. C. Fang, H. Weng, X. Dai, Z. Fang, Chin. Phys. B 25, 117106 (2016)

    Article  ADS  Google Scholar 

  3. H. Weng, X. Dai, Z. Fang, J. Phys.: Condens. Matter 28, 303001 (2016)

    Google Scholar 

  4. C. Fang, Y. Chen, H.-Y. Kee, L. Fu, Phys. Rev. Lett. 115, 036806 (2015a)

    Article  Google Scholar 

  5. B. Feng et al., Nat. Commun. 8, 1007 (2017)

    Article  ADS  Google Scholar 

  6. C. Fang, Y. Chen, H.-Y. Kee, L. Fu, Phys. Rev. B 92, 081202(R) (2015b)

    Article  ADS  Google Scholar 

  7. Y. Chen, H.-S. Kim, H.-Y. Kee, Phys. Rev. B 93, 155140 (2016)

    Article  ADS  Google Scholar 

  8. G. Bian et al., Nat. Commun. 7, 10556 (2016)

    Article  ADS  Google Scholar 

  9. C.-J. Yi et al., Phys. Rev. B 97, 201107(R) (2018)

    Article  ADS  Google Scholar 

  10. Z. Liu et al., Phys. Rev. X 8, 031044 (2018)

    Google Scholar 

  11. B.-B. Fu et al., Sci. Adv. 5, eaau6459 (2019)

    Article  ADS  Google Scholar 

  12. A.C. Ferrari et al., Nanoscale 7, 4598 (2015)

    Article  ADS  Google Scholar 

  13. J.-L. Lu, W. Luo, X.-Y. Li, S.-Q. Yang, J.-X. Cho, X.-G. Gong, H.-J. Xiang, Chin. Phys. Lett. 34, 057302 (2017)

    Article  ADS  Google Scholar 

  14. Y.-J. Jin, R. Wang, J.-Z. Zhao, Y.-P. Du, C.-D. Zheng, L.-Y. Gan, J.-F. Liu, H. Xu, S.Y. Tong, Nanoscale 9, 13112 (2017)

    Article  Google Scholar 

  15. L.-M. Yang, V. Bac̆ić, I.A. Popov, A.I. Boldyrev, T. Heine, T. Frauenheim, E. Ganz, J. Am. Chem. Soc. 137, 2757 (2015)

    Article  Google Scholar 

  16. S.A. Chambers, S.B. Anderson, J.H. Weaver, Phys. Rev. B 32, 581 (1985)

    Article  ADS  Google Scholar 

  17. R.B. Doak, D.B. Nguyen, Phys. Rev. B 40, 1495 (1989)

    Article  ADS  Google Scholar 

  18. N.J. Curson, H.G. Bullman, J.R. Buckland, W. Allison, Phys. Rev. B 55, 10819 (1997)

    Article  ADS  Google Scholar 

  19. M. Cameau et al., Phys. Rev. Mater. 3, 044004 (2019)

    Article  Google Scholar 

  20. K.-H. Kang, T.-G. Im, J.-J. Lee, J.-D. Lee, S.-W. Han, J.-I. Chung, J.-S. Kang, New Physics: Saemulli 47, 327 (2003)

    Google Scholar 

  21. K. Koepernik, H. Eschrig, Phys. Rev. B 59, 1743 (1999)

    Article  ADS  Google Scholar 

  22. I. Opahle, K. Koepernik, H. Eschrig, Phys. Rev. B 60, 14035 (1999)

    Article  ADS  Google Scholar 

  23. S. Kim, J. Kim, H.J. Choi, Y.-W. Son, Phys. Rev. Lett. 100, 176802 (2008)

    Article  ADS  Google Scholar 

  24. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 110 (2009)

    Article  ADS  Google Scholar 

  25. C. Kirkegaard, T.K. Kim, Ph Hofmann, New J. Phys. 7, 99 (2005)

    Article  ADS  Google Scholar 

  26. Y. Huh, E.G. Moon, Y.B. Kim, Phys. Rev. B 93, 035138 (2016)

    Article  ADS  Google Scholar 

  27. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 474 (2003)

    Article  ADS  Google Scholar 

  28. E. Abrahams, J. Korean Phys. Soc. 29, 18 (1996)

    Google Scholar 

  29. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, A. Lanzara, Phys. Rev. B 78, 193404 (2008)

    Article  ADS  Google Scholar 

  30. D.A. Siegel, C.-H. Park, C. Hwang, J. Deslippe, A.V. Fedorov, S.G. Louie, A. Lanzara, Proc. Natl. Acad. Sci. U.S.A. 108, 11365 (2011)

    Article  ADS  Google Scholar 

  31. C. Hwang, D.A. Siegel, S.-K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, A. Lanzara, Sci. Rep. 2, 590 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge experimental help from A. Lanzara. This work was supported by a 2-Year Research Grant from Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choongyu Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, HJ., Hwang, C. & Kim, K. The low-energy electron band structure of a two-dimensional Dirac nodal-line semimetal grown on a silicon surface. J. Korean Phys. Soc. 78, 34–39 (2021). https://doi.org/10.1007/s40042-020-00016-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00016-8

Keywords

Navigation