Skip to main content
Log in

A Set-Based Trajectory Planning Algorithm for a Network Controlled Skid-Steered Tracked Mobile Robot Subject to Skid and Slip Phenomena

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper aims to propose a solution to the feasible-trajectory planning problem for a tracked mobile robot subject to non-negligible skidding and slipping effects and whose control system, sensors and actuators are connected through a communication network. A trajectory is defined in terms of succession of linear segments with a prescribed crossing velocity and the trajectory feasibility is guaranteed in terms of sufficient conditions by recurring to set-based arguments formulated in terms of solution of semi-definite programming minimization problems (SDP) involving linear matrix inequalities (LMI) constraints. In order to show the effectiveness of proposed solution a campaign of numerical and experimental simulations involving the mobile robot V4 Jaguar by Dr.Robot is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kant, K., Zucker, S.W.: Toward efficient trajectory planning: The path-velocity decomposition. Int. J. Robot. Res. 5(3), 72–89 (1986). https://doi.org/10.1177/027836498600500304

    Article  Google Scholar 

  2. Steer, B.: Trajectory planning for a mobile robot. Int. J. Robot. Res. 8(5), 3–14 (1989). https://doi.org/10.1177/027836498900800501

    Article  Google Scholar 

  3. Aydin, S., Temeltas, H.: A novel approach to smooth trajectory planning of a mobile robot. In: 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No.02TH8623), pp. 472–477 (2002)

  4. Brezak, M., Petrović, I.: Time-optimal trajectory planning along predefined path for mobile robots with velocity and acceleration constraints. In: 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 942–947 (2011)

  5. Weiss, A., Petersen, C., Baldwin, M., Erwin, R.S., Kolmanovsky, I.: Safe positively invariant sets for spacecraft obstacle avoidance. J. Guid. Control. Dyn. 38(4), 720–732 (2015)

    Article  Google Scholar 

  6. Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., Frazzoli, E., Huang, A., Karaman, S.: A perception-driven autonomous urban vehicle. J. Field Robot. 25(10), 727–774 (2008). https://doi.org/10.1002/rob.20262

    Article  Google Scholar 

  7. Kuffner, J.J., Kagami, S., Nishiwaki, K., Inaba, M., Inoue, H.: Dynamically-stable motion planning for humanoid robots. Auton. Robot. 12(1), 105–118 (2002)

    Article  Google Scholar 

  8. Ziegler, J., Stiller, C.: Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1879–1884 (2009)

  9. Shiller, Z., Serate, B.: Trajectory planning of tracked vehicles. ASME J. Dyn. Syst. Measur. Control 117, 619–624 (1995). https://doi.org/10.1115/1.2801122

    Article  Google Scholar 

  10. Liu, C., Li, C.-Y., Wang, Y., Tomizuka, M.: Convex feasible set algorithm for constrained trajectory smoothing. In: Proceedings of the American Control Conference Proceedings of the American Control Conference (2017)

  11. Howard, T.M., Green, C.J., Kelly, A.: Receding horizon model- predictive control for mobile robot navigation of intricate paths. Field and Service Robotics, 69–78 (2010)

  12. Nardi, V.A., Ferraro, A., Scordamaglia, V.: Feasible trajectory planning algorithm for a skid-steered tracked mobile robot subject to skid and slip phenomena. In: 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), pp. 120–125. IEEE (2018)

  13. Scordamaglia, V., Nardi, V.A., Ferraro, A.: A feasible trajectory planning algorithm for a network controlled robot subject to skid and slip phenomena. In: 2019 24th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE (2019)

  14. Mattei, M., Scordamaglia, V.: Path planning for wheeled mobile robots using core paths graphs. In: Proceedings of the 7th IFAC Symposium on Intelligent Autonomous Vehicles (2010)

  15. Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query path planning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (2000)

  16. Sisbot, E.A., Marin-Urias, L.F., Broquere, X., Sidobre, D., Alami, R.: Synthesizing robot motions adapted to human presence. Int. J. Soc. Robot. 2(3), 329–343 (2010)

    Article  Google Scholar 

  17. Howard, T.M., Green, C.J., Kelly, A., Ferguson, D.: State space sampling of feasible motions for high-performance mobile robot navigation in complex environments. J. Field Robot. 25(6-7), 325–345 (2008)

    Article  Google Scholar 

  18. Polack, P., Altché, F., d’Andréa-Novel, B., de La Fortelle, A.: The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles? In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 812–818 (2017)

  19. Kuwata, Y., Schouwenaars, T., Richards, A., How, J.: Robust constrained receding horizon control for trajectory planning. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 6079 (2005)

  20. Martínez, J.L., Mandow, A., Morales, J., Pedraza, S., García-Cerezo, A.: Approximating kinematics for tracked mobile robots. Int. J. Robot. Res. 24(10), 867–878 (2005)

    Article  Google Scholar 

  21. Wu, Y., Wang, T., Liang, J., Chen, J., Zhao, Q., Yang, X., Han, C.: Experimental kinematics modeling estimation for wheeled skid-steering mobile robots. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 268–273 (2013)

  22. Krishnamurthy, D.A.: Modeling and simulation of skid steered robot pioneer 3at. Master’s Thesis, Florida State University, College of Engineering (2008)

  23. Mandow, A., Martínez, J.L., Morales, J., Blanco, J.L., García-Cerezo, A., Gonzalez, J.: Experimental kinematics for wheeled skid-steer mobile robots. In: Proceedings of the International Conference on Intelligent Robots and Systems (2007)

  24. Arcara, P., Melchiorri, C.: Control schemes for teleoperation with time delay: A comparative study. Robot. Auton. Syst. 38(1), 49–64 (2002)

    Article  Google Scholar 

  25. Caruntu, C.F., Lazar, M., Gielen, R.H., Van den Bosch, P.P.J., Di Cairano, S.: Lyapunov based predictive control of vehicle drivetrains over can. Control. Eng. Pract. 21(12), 1884–1898 (2013)

    Article  Google Scholar 

  26. Okamura, A.M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Indust. Robot: Int. J. 31(6), 499–508 (2004)

    Article  Google Scholar 

  27. Samad, T., McLaughlin, P., Lu, J.: System architecture for process automation: Review and trends. J. Process. Control. 17(3), 191–201 (2007)

    Article  Google Scholar 

  28. Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Control Syst. Mag. 21(1), 84–99 (2001)

    Article  Google Scholar 

  29. Bemporad, A., Heemels, M., Vejdemo-Johansson, M.: Networked control systems. Lecture Notes in Control and Information Sciences. Springer London (2010)

  30. Antsaklis, P., Baillieul, J.: Guest editorial special issue on networked control systems. IEEE Trans. Autom. Control 49(9), 1421–1423 (2004)

    Article  MathSciNet  Google Scholar 

  31. Bemporad, A., Di Cairano, S., Henriksson, E., Johansson, K.H.: Hybrid model predictive control based on wireless sensor feedback: An experimental study. Int. J. Robust Nonlinear Control: IFAC-Affil. J. 20(2), 209–225 (2010)

    Article  Google Scholar 

  32. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007)

    Article  Google Scholar 

  33. Fliess, M., Join, C.: Model-free control. Int. J. Control. 86(12), 2228–2252 (2013). https://doi.org/10.1080/00207179.2013.810345

    Article  MathSciNet  Google Scholar 

  34. Depraetere, B., Liu, M., Pinte, G., Grondman, I., Babuška, R.: Comparison of model-free and model-based methods for time optimal hit control of a badminton robot. Mechatronics 24(8), 1021–1030 (2014). https://doi.org/10.1016/j.mechatronics.2014.08.001

    Article  Google Scholar 

  35. Zhang, M.: Finite-time model-free trajectory tracking control for overhead cranes subject to model uncertainties, parameter variations and external disturbances. Trans. Inst. Meas. Control. 41(12), 3516–3525 (2019). https://doi.org/10.1177/0142331219830157

    Article  Google Scholar 

  36. Tutsoy, O., Barkana, D.E., Tugal, H.: Design of a completely model free adaptive control in the presence of parametric, non-parametric uncertainties and random control signal delay. ISA Trans. 76, 67–77 (2018). https://doi.org/10.1016/j.isatra.2018.03.002

    Article  Google Scholar 

  37. Yang, H., Liu, C., Shi, J., Zheng, G.: Development and control of four-wheel independent driving and modular steering electric vehicles for improved maneuverability limits. In: SAE Technical Paper. SAE International (2019)

  38. Afonso, R.J.M., Galvao, R.K.H., Kienitz, K.H.: Waypoint trajectory planning in the presence of obstacles with a tunnel-milp approach. In: 2013 European Control Conference (ECC), pp. 1390–1397. IEEE (2013)

  39. Pivtoraiko, M., Howard, T.M., Nesnas, I., Kelly, A.: Field experiments in rover navigation via model-based trajectory generation and nonholonomic motion planning in state lattices. In: Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics, and Automation in Space, pp. 25–29 (2008)

  40. Kamyar, R., Taheri, E.: Aircraft optimal terrain/threat-based trajectory planning and control. J. Guid. Control. Dyn. 37(2), 466–483 (2014)

    Article  Google Scholar 

  41. Wolek, A., Woolsey, C.A.: Model-based path planning. In: Sensing and Control for Autonomous Vehicles, pp. 183–206. Springer (2017)

  42. Kayacan, E., Ramon, H., Saeys, W.: Robust trajectory tracking error model-based predictive control for unmanned ground vehicles. IEEE/ASME Trans. Mechatron. 21(2), 806–814 (2016)

    Article  Google Scholar 

  43. Hegedüs, F., Bécsi, T., Aradi, S., G based trajectory planning for highly pár, P: Model based trajectory planning for highly automated road vehicles. IFAC-PapersOnLine 50(1), 6958–6964 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1336. 20th IFAC World Congress

    Article  Google Scholar 

  44. Kayacan, E., Kayacan, E., Chen, I.-M., Ramon, H., Saeys, W.: On the comparison of model-based and model-free controllers in guidance, navigation and control of agricultural vehicles. Springer International Publishing, pp. 49–73 (2018)

  45. Kothare, M.V., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32(10), 1361–1379 (1996). https://doi.org/10.1016/0005-1098(96)00063-5

    Article  MathSciNet  Google Scholar 

  46. Horn, S., Janschek, K.: A set-based global dynamic window algorithm for robust and safe mobile robot path planning. In: ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1–7 (2010)

  47. Kumar, V., Źefran, M., Ostrowski, J.P.: Motion planning and control of robots, chap. 15. 295–315. Wiley (2007)

  48. Bansal, S., Chen, M., Tanabe, K., Tomlin, C.J.: Provably safe and scalable multi-vehicle trajectory planning. In: IEEE Transactions on Control Systems Technology (TCST), under review (2019)

  49. Danielson, C., Berntorp, K., Di Cairano, S., Weiss, A.: Motion-planning for unicycles using the invariant-set motion-planner. In: Proceedings of the American Control Conference (2020)

  50. Blanchini, F., Pellegrino, F.A., Visentini, L.: Control of manipulators in a constrained workspace by means of linked invariant sets. Int. J. Robust Nonlinear Control: IFAC-Affil. J. 14(13-14), 1185–1205 (2004)

    Article  MathSciNet  Google Scholar 

  51. Majumdar, A., Tedrake, R.: Robust online motion planning with regions of finite time invariance. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X, pp 543–558. Springer, Berlin (2013)

  52. Pek, C, Althoff, M: Efficient computation of invariably safe states for motion planning of self-driving vehicles. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3523–3530 (2018)

  53. Berntorp, K., Weiss, A., Danielson, C., Kolmanovsky, I.V., Di Cairano, S.: Automated driving: Safe motion planning using positively invariant sets. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (2017)

  54. Weiss, A., Petersen, C., Baldwin, M., Erwin, R.S., Kolmanovsky, I.: Safe positively invariant sets for spacecraft obstacle avoidance. J. Guid. Control. Dyn. 38(4), 720–732 (2015). https://doi.org/10.2514/1.G000115

    Article  Google Scholar 

  55. Li, Z., Li, W., Wang, P.: Design of robust positively invariant set with associated controller for the multi-rotor uav. In: IOP Conference Series: Materials Science and Engineering, vol. 631, pp. 032053. IOP Publishing (2019)

  56. Weiss, A., Baldwin, M., Petersen, C., Erwin, R., Kolmanovsky, I.: Spacecraft constrained maneuver planning for moving debris avoidance using positively invariant constraint admissible sets. In: 2013 American Control Conference, pp. 4802–4807 (2013)

  57. Faiz, N., Agrawal, S.K.: Trajectory planning of robots with dynamics and inequalities. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 4, pp. 3976–3982 (2000)

  58. Kousik, S., Holmes, P., Vasudevan, R.: Safe, aggressive quadrotor flight via reachability-based trajectory design. In: Dynamic Systems and Control Conference, vol. 59162, pp. V003T19A010. American Society of Mechanical Engineers (2019)

  59. Qi, X., Theilliol, D., Song, D., Han, J.: Invariant-set-based planning approach for obstacle avoidance under vehicle dynamic constraints. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1692–1697 (2015)

  60. Althoff, M., Krogh, B.H.: Zonotope bundles for the efficient computation of reachable sets. In: 2011 50th IEEE conference on decision and control and European control conference, pp. 6814–6821. IEEE (2011)

  61. Kelly, A.: Linearized error propagation in odometry. Int. J. Robot. Res. 23(2), 179–218 (2004). https://doi.org/10.1177/0278364904041326

    Article  Google Scholar 

  62. Pentzer, J., Brennan, S., Reichard, K.: Model-based prediction of skid-steer robot kinematics using online estimation of track instantaneous centers of rotation. J. Field Robot. 31(3), 455–476 (2014). https://doi.org/10.1002/rob.21509

    Article  Google Scholar 

  63. Michałek, M., Dutkiewicz, P., Kiełczewski, M., Pazderski, D.: Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system. Int. J. Appl. Math. Comput. Sci. 19(4), 547–559 (2009)

    Article  MathSciNet  Google Scholar 

  64. Wong, J.Y.: Theory of ground vehicles. Wiley (2008)

  65. Endo, D., Okada, Y., Nagatani, K., Yoshida, K.: Path following control for tracked vehicles based on slip-compensating odometry. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2871–2876 (2007)

  66. Nagatani, K, Tokunaga, N, Okada, Y, Yoshida, K: Continuous acquisition of three-dimensional environment information for tracked vehicles on uneven terrain. In: 2008 IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 25–30 (2008)

  67. Reinstein, M., Kubelka, V., Zimmermann, K.: Terrain adaptive odometry for mobile skid-steer robots. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4706–4711 (2013)

  68. Sevil, H.E., Desai, P., Dogan, A., Huff, B.: Modeling of an unmanned ground vehicle for autonomous navigation and obstacle avoidance simulations. In: ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, vol. 1, pp. 529–534. American Society of Mechanical Engineers Digital Collection (2012)

  69. Moosavian, S.A.A.: Experimental slip estimation for exact kinematics modeling and control of a tracked mobile robot. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 95–100. IEEE (2008)

  70. Dogru, S., Marques, L.: Estimation of rotational speeds of skid-steered wheeled mobile robots using an improved kinematic model. In: 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 73–78 (2017)

  71. Cloosterman, M.BG, Hetel, L., Vande Wouw, N., Heemels, W.P.M.H., Daafouz, J., Nijmeijer, H.: Controller synthesis for networked control systems. Automatica 46(10), 1584–1594 (2010)

    Article  MathSciNet  Google Scholar 

  72. Bernardini, D., Donkers, M.C.F., Bemporad, A., Heemels, W.P.M.H.: A model predictive control approach for stochastic networked control systems. IFAC Proc. 43(19), 7–12 (2010)

    Article  Google Scholar 

  73. Open Source Robotics Foundation: ROS/TCPROS - ROS wiki. https://web.archive.org/web/20191228024833/http://wiki.ros.org/ROS/TCPROS. [Online; accessed 03-July-2020] (2013)

  74. Posthumus - Cloosterman, MBG: Control over communication networks : modeling, analysis, and synthesis. Ph.D. Thesis. Department of Mechanical Engineering. https://doi.org/10.6100/IR635444 (2008)

  75. Lombardi, W., Olaru, S., Niculescu, S.I.: Invariant sets for a class of linear systems with variable time-delay. In: 2009 European Control Conference (ECC), pp. 4757–4762 (2009)

  76. Heemels, W.P.M.H.M., vande Wouw, N., Gielen, R.H., Donkers, M.C.F., Hetel, L., Olaru, S., Lazar, M., Daafouz, J., Niculescu, S.-I.: Comparison of overapproximation methods for stability analysis of networked control systems. In: Proceedings of the 13th ACM international conference on Hybrid systems: computation and control, pp. 181–190 (2010)

  77. Kolmanovsky, I., Gilbert, E.G.: Theory and computation of disturbance invariant sets for discrete time linear systems. Math. Probl. Eng. 4(4), 317–367 (1998)

    Article  Google Scholar 

  78. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of A*. J. ACM 32(3), 505–536 (1985)

    Article  MathSciNet  Google Scholar 

  79. Helmert, M., Röger, G., et al.: How good is almost perfect? In: vol. 8, pp. 944–949. AAAI (2008)

  80. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT press (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Antonio Nardi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scordamaglia, V., Nardi, V.A. A Set-Based Trajectory Planning Algorithm for a Network Controlled Skid-Steered Tracked Mobile Robot Subject to Skid and Slip Phenomena. J Intell Robot Syst 101, 15 (2021). https://doi.org/10.1007/s10846-020-01267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-020-01267-0

Keywords

Navigation