Skip to main content

Advertisement

Log in

Energy-Conscientious Trajectory Planning for an Autonomous Mobile Robot in an Asymmetric Task Space

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Autonomous Mobile Robots (AMRs) have become extremely popular in the manufacturing domain, especially for processes involving large factory floors where these robots are used for transporting materials from one location to another. In an environment where there are multiple prioritized tasks to be completed by a school of AMRs, the overall planning problem can be broken down into three sequential steps: task allocation for the school of AMRs, task scheduling for each AMR, and trajectory planning for each individual AMR. This paper focuses on the trajectory generation procedure for each AMR. Unlike traditional approaches that only consider the location an AMR has to travel to during path planning, here, energy efficiency of the AMR is also considered. We present the physics-based model of the AMR as well as an optimal control formulation for energy-conscientious trajectory generation for the AMR. Methods to numerically solve this problem are discussed, and results are presented for each proposed algorithm on approximately 100 test cases, comparing both performance and computational efficiency. The results show that the presented energy-conscientious methods perform better in terms of energy usage (5-10%) compared to commonly-used shortest path techniques while maintaining similar computational and operational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakshi, S.: Modeling and control of transition dynamics in a two-piston toroidal blood pump. Master’s Thesis, The University of Texas at Austin, Austin TX (2017)

  2. Bakshi, S., Yan, Z., Chen, D., Qian, Q., Chen, Y.: A fast algorithm on minimum-time scheduling of an autonomous ground vehicle using a traveling salesman framework. Journal of Dynamic Systems, Measurement, and Control 140(12). https://doi.org/10.1115/1.4040665 (2018)

  3. Bakshi, S., Feng, T., Yan, Z., Chen, D.: Fast scheduling of autonomous mobile robots under task space constraints with priorities. Journal of Dynamic Systems, Measurement, and Control 141(7). https://doi.org/10.1115/1.4043116 (2019)

  4. Bakshi, S., Feng, T., Yan, Z., Chen, D.: A probabilistic technique for allocation of tasks with priorities in a school of autonomous mobile robots. In: 2019 ASME Dynamic Systems and Control Conference, American Society of Mechanical Engineers. https://doi.org/10.1115/dscc2019-8970 (2019)

  5. Bakshi, S., Feng, T., Yan, Z., Chen, D.: A regularized quadratic programming approach to real-time scheduling of autonomous mobile robots in a prioritized task space. In: 2019 American Control Conference (ACC). https://doi.org/10.23919/acc.2019.8814986. IEEE (2019)

  6. Barai, A., Widanage, W.D., Marco, J., McGordon, A., Jennings, P.: A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells. J. Power. Sources 295, 99–107 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.140

    Article  Google Scholar 

  7. Barco, J., Guerra, A., Muñoz, L., Quijano, N.: Optimal routing and scheduling of charge for electric vehicles: a case study. Math. Probl. Eng. 2017, 1–16 (2017). https://doi.org/10.1155/2017/8509783

    Article  Google Scholar 

  8. Basso, R., Kulcsár, B., Egardt, B., Lindroth, P., Sanchez-Diaz, I.: Energy consumption estimation integrated into the electric vehicle routing problem. Transportation Research Part D: Transport and Environment 69, 141–167 (2019). https://doi.org/10.1016/j.trd.2019.01.006

    Article  Google Scholar 

  9. Becerra, V.M.: Solving complex optimal control problems at no cost with PSOPT. In: 2010 IEEE International Symposium on Computer-Aided Control System Design. https://doi.org/10.1109/cacsd.2010.5612676. IEEE (2010)

  10. Bektaş, T., Laporte, G.: The pollution-routing problem. Transportation Research Part B: Methodological 45(8), 1232–1250 (2011). https://doi.org/10.1016/j.trb.2011.02.004

    Article  Google Scholar 

  11. Bruglieri, M., Mancini, S., Pezzella, F., Pisacane, O.: A path-based solution approach for the green vehicle routing problem. Computers & Operations Research 103, 109–122 (2019). https://doi.org/10.1016/j.cor.2018.10.019

    Article  MathSciNet  Google Scholar 

  12. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988). https://doi.org/10.1007/978-3-642-84108-8

    Book  Google Scholar 

  13. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497 (1957). https://doi.org/10.2307/2372560

    Article  MathSciNet  Google Scholar 

  14. Ehmke, J.F., Campbell, A.M., Thomas, B.W.: Optimizing for total costs in vehicle routing in urban areas. Transportation Research Part E: Logistics and Transportation Review 116, 242–265 (2018). https://doi.org/10.1016/j.tre.2018.06.008

    Article  Google Scholar 

  15. Elnagar, G., Kazemi, M., Razzaghi, M.: The pseudospectral legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995). https://doi.org/10.1109/9.467672

    Article  MathSciNet  Google Scholar 

  16. Erdoğan, S., Miller-Hooks, E.: A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review 48(1), 100–114 (2012). https://doi.org/10.1016/j.tre.2011.08.001

    Article  Google Scholar 

  17. Fornberg, B., Sloan, D.M.: A review of pseudospectral methods for solving partial differential equations. Acta Numerica 3, 203–267 (1994). https://doi.org/10.1017/s0962492900002440

    Article  MathSciNet  Google Scholar 

  18. Gan, L., Topcu, U., Low, S.H.: Optimal decentralized protocol for electric vehicle charging. IEEE Transactions on Power Systems 28(2), 940–951 (2013). https://doi.org/10.1109/tpwrs.2012.2210288

    Article  Google Scholar 

  19. Genikomsakis, K.N., Mitrentsis, G.: A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications. Transportation Research Part D: Transport and Environment 50, 98–118 (2017). https://doi.org/10.1016/j.trd.2016.10.014

    Article  Google Scholar 

  20. Goeke, D., Schneider, M.: Routing a mixed fleet of electric and conventional vehicles. Eur. J. Oper. Res. 245(1), 81–99 (2015). https://doi.org/10.1016/j.ejor.2015.01.049

    Article  MathSciNet  Google Scholar 

  21. Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Comput. Optim. Appl. 41(3), 307–335 (2007). https://doi.org/10.1007/s10589-007-9102-4

    Article  MathSciNet  Google Scholar 

  22. He, S., Lee, C.H., Shin, H.S., Tsourdos, A.: Minimum-effort waypoint-following guidance. Journal of Guidance, Control, and Dynamics 42(7), 1551–1561 (2019). https://doi.org/10.2514/1.g004045

    Article  Google Scholar 

  23. Hoke, A., Brissette, A., Maksimovic, D., Pratt, A., Smith, K.: Electric vehicle charge optimization including effects of lithium-ion battery degradation. In: 2011 IEEE Vehicle Power and Propulsion Conference. https://doi.org/10.1109/vppc.2011.6043046. IEEE (2011)

  24. Huang, Y., Zhao, L., Woensel, T.V., Gross, J.P.: Time-dependent vehicle routing problem with path flexibility. Transportation Research Part B: Methodological 95, 169–195 (2017). https://doi.org/10.1016/j.trb.2016.10.013

    Article  Google Scholar 

  25. Keskin, M., Çatay, B.: Partial recharge strategies for the electric vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies 65, 111–127 (2016). https://doi.org/10.1016/j.trc.2016.01.013

    Article  Google Scholar 

  26. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  27. Koç, Ç., Karaoglan, I.: The green vehicle routing problem: a heuristic based exact solution approach. Appl. Soft Comput. 39, 154–164 (2016). https://doi.org/10.1016/j.asoc.2015.10.064

    Article  Google Scholar 

  28. Kong, J., Pfeiffer, M., Schildbach, G., Borrelli, F.: Kinematic and dynamic vehicle models for autonomous driving control design. In: 2015 IEEE Intelligent Vehicles Symposium (IV). https://doi.org/10.1109/ivs.2015.7225830. IEEE (2015)

  29. Lin, J., Zhou, W., Wolfson, O.: Electric vehicle routing problem. Transportation Research Procedia 12, 508–521 (2016). https://doi.org/10.1016/j.trpro.2016.02.007

    Article  Google Scholar 

  30. Liu, S., Sun, D.: Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE/ASME Transactions on Mechatronics 19(2), 401–411 (2014). https://doi.org/10.1109/tmech.2013.2241777

    Article  Google Scholar 

  31. Ma, Z., Callaway, D.S., Hiskens, I.A.: Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans. Control Syst. Technol. 21(1), 67–78 (2013). https://doi.org/10.1109/tcst.2011.2174059

    Article  Google Scholar 

  32. Madankumar, S., Rajendran, C.: Mathematical models for green vehicle routing problems with pickup and delivery: a case of semiconductor supply chain. Computers & Operations Research 89, 183–192 (2018). https://doi.org/10.1016/j.cor.2016.03.013

    Article  MathSciNet  Google Scholar 

  33. Markel, T., Smith, K., Pesaran, A.A.: Improving petroleum displacement potential of PHEVs using enhanced charging scenarios. In: Electric and Hybrid Vehicles, pp 211–225 . Elsevier (2010), https://doi.org/10.1016/b978-0-444-53565-8.00008-7

  34. Mayne, D.: A second-order gradient method for determining optimal trajectories of non-linear discrete-time systems. Int. J. Control. 3(1), 85–95 (1966). https://doi.org/10.1080/00207176608921369

    Article  Google Scholar 

  35. Montoya, A., Guéret, C., Mendoza, J.E., Villegas, J.G.: The electric vehicle routing problem with nonlinear charging function. Transportation Research Part B: Methodological 103, 87–110 (2017). https://doi.org/10.1016/j.trb.2017.02.004

    Article  Google Scholar 

  36. Morbidi, F., Cano, R., Lara, D.: Minimum-energy path generation for a quadrotor UAV. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/icra.2016.7487285. IEEE (2016)

  37. Nasri, M.I., Bektaş, T., Laporte, G.: Route and speed optimization for autonomous trucks. Computers & Operations Research 100, 89–101 (2018). https://doi.org/10.1016/j.cor.2018.07.015

    Article  MathSciNet  Google Scholar 

  38. Pattipati, B., Balasingam, B., Avvari, G., Pattipati, K., Bar-Shalom, Y.: Open circuit voltage characterization of lithium-ion batteries. J. Power. Sources 269, 317–333 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.152

    Article  Google Scholar 

  39. Plett, G.L.: Battery management systems, Volume I: Battery modeling. Artech House (2015)

  40. Plett, G.L.: Battery management systems, Volume II: Equivalent-circuit methods. Artech House (2015)

  41. Qian, J., Eglese, R.: Fuel emissions optimization in vehicle routing problems with time-varying speeds. Eur. J. Oper. Res. 248(3), 840–848 (2016). https://doi.org/10.1016/j.ejor.2015.09.009

    Article  MathSciNet  Google Scholar 

  42. Rajamani, R.: Vehicle Dynamics and Control. Springer, US. https://doi.org/10.1007/978-1-4614-1433-9 (2012)

  43. Sachenbacher, M., Leucker, M., Artmeier, A., Haselmayr, J.: Efficient energy-optimal routing for electric vehicles. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pp 1402–1407. AAAI Press, AAAI ’11 (2011)

  44. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 48(4), 500–520 (2014). https://doi.org/10.1287/trsc.2013.0490

    Article  Google Scholar 

  45. Todorov, E., Li, W.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proceedings of the 2005, American Control Conference, 2005. https://doi.org/10.1109/acc.2005.1469949. IEEE (2005)

  46. Tokekar, P., Karnad, N., Isler, V.: Energy-optimal trajectory planning for car-like robots. Auton. Robot. 37(3), 279–300 (2014). https://doi.org/10.1007/s10514-014-9390-3

    Article  Google Scholar 

  47. Walker, A.: Hard Real-Time Motion Planning for Autonomous Vehicles. PhD Thesis, Swinburne University Hawthorn, VIC, Australia (2011)

  48. Wen, M., Linde, E., Ropke, S., Mirchandani, P., Larsen, A.: An adaptive large neighborhood search heuristic for the electric vehicle scheduling problem. Computers & Operations Research 76, 73–83 (2016). https://doi.org/10.1016/j.cor.2016.06.013

    Article  MathSciNet  Google Scholar 

  49. Woo, S., Keller, A.M., Choudhry, W., Trakhtengerts, R., Bakshi, S., Yan, Z., Chen, D.: A development platform for real time routing of an autonomous ground vehicle to complete prioritized tasks. In: 2019 American Control Conference (ACC). https://doi.org/10.23919/acc.2019.8814614. IEEE (2019)

  50. Zhang, R., Xia, B., Li, B., Cao, L., Lai, Y., Zheng, W., Wang, H., Wang, W., Wang, M.: A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature. Energies 11(9), 2408 (2018). https://doi.org/10.3390/en11092408

    Article  Google Scholar 

  51. Zhang, S., Gajpal, Y., Appadoo, S., Abdulkader, M.: Electric vehicle routing problem with recharging stations for minimizing energy consumption. Int. J. Prod. Econ. 203, 404–413 (2018). https://doi.org/10.1016/j.ijpe.2018.07.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soovadeep Bakshi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: AMR and Problem Parameters

Appendix: AMR and Problem Parameters

The parameters of the AMR model are shown below:

Parameter

Symbol

Value

Wheelbase

L

1.5 m

Vehicle Mass

m

500 kg

Wheel Radius

rw

0.2 m

Motor Constant

Km

1.24 N.m/A

Motor Inertia

Jm

0.2 kg.m2

Motor Resistance

Rm

0.35 Ω

Max. Velocity

\(v_{\max \limits }\)

15 km/hr

Max./Min. SOC

\(SOC_{\min \limits ,\max \limits }\)

[0.8, 0.3]

Min. Turn Radius

\(R_{t,\min \limits }\)

3 m

Max. Voltage Input

\(E_{\max \limits }\)

38 V

Max. Brake Torque

\(\tau _{b,\max \limits }\)

981 N.m

Efficiency

η

0.912

Battery Capacity

Q

25 A.h

For the recharge scheduling test cases as mentioned in Section ??, the same parameters of the vehicle can be used, but with lower battery capacity (2 A.h) in order to simulate faster drop in SOC levels.

The structure of the cost function used in this paper is as shown in Eq. (??), with the weights w1 = 1, w2 = 1 and w3 = 0. There is no weight on the \(\dot {\psi }^{2}\) term as it is desired that the performance comparison is made purely in terms of energy consumption from the battery for analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakshi, S., Feng, T., Yan, Z. et al. Energy-Conscientious Trajectory Planning for an Autonomous Mobile Robot in an Asymmetric Task Space. J Intell Robot Syst 101, 18 (2021). https://doi.org/10.1007/s10846-020-01288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-020-01288-9

Keywords

Navigation