Skip to main content
Log in

Recurrent novae: Single degenerate progenitors of Type Ia supernovae

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Type Ia supernovae are the result of explosive thermonuclear burning in CO white dwarfs. The progenitors of the Ia supernovae are white dwarfs in an interacting binary system. The donor companion is either a degenerate star (white dwarf) or a non-degenerate star (e.g. red giant). Recurrent novae are interacting binaries with a massive white dwarf accreting from either a main sequence, slightly evolved, or a red giant star. The white dwarf in these systems is a massive, hot white dwarf, accreting at a high rate. Recurrent novae are thought to be the most promising single degenerate progenitors of Type Ia supernovae. Presented here are the properties of a few recurrent novae based on recent outbursts. The elemental abundances and their distribution in the ejected shell are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Anupama, G. C. 2008, ASP Conf. Ser., 401, 31

    ADS  Google Scholar 

  • Anupama, G. C. 2013, in IAU Symp. 281, Binary Paths to Type Ia Supernovae Explosions, Cambridge Univ. Press, Cambridge, 154

  • Anupama, G. C., Dewangan, G. C. 2000, AJ, 119, 1359

    ADS  Google Scholar 

  • Anupama G. C., Kamath U. S., Ramaprakash A. N., et al., 2013, A&A, 559, A121

    ADS  Google Scholar 

  • Barlow, M. J., Brodie, J. P., Brunt, C. C., et al. 1981, MNRAS, 195, 61

    ADS  Google Scholar 

  • Bode M. F. et al., 2006, ApJ, 652, 629

    ADS  Google Scholar 

  • Cao Y., et al., 2015, Nature, 521, 328

    ADS  Google Scholar 

  • Darnley, M. J., Henze, M., Steele, I. A., et al. 2015, A&A, 580, A45

    ADS  Google Scholar 

  • Darnley, M. J., Henze, M., Bode, M. F., et al. 2016, ApJ, 833, 149

    ADS  Google Scholar 

  • Diaz, M. P., Williams, R. E., Luna, G. J., Moraes, M., Takeda L. 2010, AJ, 140, 1860

    ADS  Google Scholar 

  • Dilday B., et al., 2012, Science, 337, 942

    ADS  Google Scholar 

  • Evans, A., Krautter, J., Vanzi, L., Starrfield, S. 2001, A&A, 378, 132

    ADS  Google Scholar 

  • Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017, Revista Mexicana de Astronoma y Astrofsica, 53, 385

    ADS  Google Scholar 

  • Godon, P., Sion, E., Williams, R., Starrfield, S. 2018, AJ, 862, 89

    ADS  Google Scholar 

  • Henze, M., Ness, J.-U., Darnley, M. J., et al. 2015, A&A, 580, A46

    ADS  Google Scholar 

  • Henze, M., Darnley, M. J., Williams, S. C., et al. 2018, ApJ, 857, 68

    ADS  Google Scholar 

  • Iijima, T. 2002, A&A, 387, 1013

    ADS  Google Scholar 

  • Izzo, L., Ederoclite, A., Della Valle, M., et al. 2012, Mem. Soc. Astron. It., 83, 830

    ADS  Google Scholar 

  • Joshi, V., Banerjee, D. P. K., Ashok, N. M. 2014, MNRAS, 443, 559

    ADS  Google Scholar 

  • Kafka, S., Williams, R. 2011, A&A, 526, A83

    ADS  Google Scholar 

  • Kantharia N. G., Anupama G. C., Prabhu T. P., Ramya S., Bode M. F., Eyres S. P. S., O’Brien T. J., 2007, ApJ, 667, L171

    ADS  Google Scholar 

  • Kasen D., 2010, ApJ, 708, 1025

    ADS  Google Scholar 

  • Khokhlov A. M., 1991, A&A, 245, 114

    ADS  Google Scholar 

  • Maoz, D., & Graur, O. 2017, ApJ, 848, 25

    ADS  Google Scholar 

  • Maxwell, M. P., Rushton, M. T., Darnley, M. J., et al. 2012, MNRAS, 419, 1465

    ADS  Google Scholar 

  • Mondal, A., Anupama, G. C., Kamath, U. S., et al. 2018, MNRAS, 474, 4211

    ADS  Google Scholar 

  • Mondal, A., Das, R., Anupama, G. C., Mondal, S. 2020, MNRAS, 492, 2326

    ADS  Google Scholar 

  • Morisset, C. 2013, pyCloudy: Tools to manage astronomical Cloudy photoionization code, Astrophysics Source Code Library

  • Munari, U., Zwitter, T., Tomov, T., et al. 1999, A&A, 347, L39

    ADS  Google Scholar 

  • Narumi H., Hirosawa K., Kanai K., Renz W., Pereira A., Nakano S., Nakamura Y., Pojmanski G., 2006, IAU Circ., 8671, 1

    ADS  Google Scholar 

  • Nishiyama, K. & Kabashima, F. 2008, CBATIAU, http://www.cbat.eps.harvard.edu/iau/CBAT_M31.html#2008-12a

  • Orio, M., Drake, J, Ness, J.-U., et al., 2020, ApJ, 895, 80

  • Patat F., Chugai N. N., Podsiadlowski P., Mason E., Melo C., Pasquini L., 2011, A&A, 530, A63

    ADS  Google Scholar 

  • Pavana, M., Anche, R. M., Anupama, G. C., Ramaprakash, A. N., & Selvakumar, G. 2019, A&A, 622, A126

    ADS  Google Scholar 

  • Pavana, M. et al., 2020, [under preparation]

  • Phillips M. M., 1993, ApJ, 413, L105

    ADS  Google Scholar 

  • Schaefer, B. E. 2010, ApJS, 187, 275

    ADS  Google Scholar 

  • Sekiguchi, K., Feast, M. W., Whitelock, P. A., et al. 1988, MNRAS, 234, 281

    ADS  Google Scholar 

  • Selvelli, P., Cassatella, A., Gilmozzi, R., & Gonzlez-Riestra, R. 2008, A&A, 492, 787

    ADS  Google Scholar 

  • Shore, S. N., Schwarz, G. J., De Gennaro Aquino, I., et al. 2013, A&A, 549, A140

    ADS  Google Scholar 

  • Singh, K. P., Grish, V., Pavana. M., Noss, J-U., Anupama, G. C., Odam, M., 2020, MNRAS (in press)

  • Skopal A. et al., 2008, in Evans A., Bode M. F., O’Brien T. J., Darnley M. J., eds, ASP Conf. Ser. Vol. 401, RS Ophiuchi (2006) and the Recurrent Nova Phenomenon, Astron. Soc. Pac., San Francisco, p. 227

  • Sokoloski J. L., Luna G. J. M., Mukai K., Kenyon S. J., 2006, Nature, 442, 276

    ADS  Google Scholar 

  • Starrfield, S., Iliadis, C., Timmes, F. X., et al. 2012, BASI, 40, 419

    ADS  Google Scholar 

  • Starrfield S., Bose M., Iliadis C., Hix W. R., Woodward C. E.,Wagner R. M., 2020, ApJ, 895, 70

    ADS  Google Scholar 

  • Surina, F., Hounsell, R. A., Bode, M. F., et al. 2014, AJ, 147, 107

    ADS  Google Scholar 

  • Tang, S., Bildsten, L., Wolf, W. M., et al. 2014, ApJ, 786, 61

    ADS  Google Scholar 

  • Woosley S. E., Weaver T. A., 1994, ApJ, 423, 371

    ADS  Google Scholar 

  • Williams, R. E., Sparks, W. M., Gallagher, J. S., et al. 1981, ApJ, 251, 221

    ADS  Google Scholar 

  • Yamanaka, M., Uemura, M., Kawabata, K. S., et al. 2010, PASJ, 62, L37

    ADS  Google Scholar 

Download references

Acknowledgements

The support of the staff at IAO, CREST and VBO during observations is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Anupama.

Additional information

This article is part of the Topical Collection: Chemical elements in the Universe: Origin and evolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anupama, G.C., Pavana, M. Recurrent novae: Single degenerate progenitors of Type Ia supernovae. J Astrophys Astron 41, 43 (2020). https://doi.org/10.1007/s12036-020-09661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-020-09661-8

Keywords

Navigation