Skip to main content
Log in

\({{\mathcal{L}}}_{1}\)-Optimal Filtering of Markov Jump Processes. I. Exact Solution and Numerical Implementation Schemes

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Part I of this research work is devoted to the development of a class of numerical solution algorithms for the filtering problem of Markov jump processes by indirect continuous-time observations corrupted by Wiener noises. The expected \({{\mathcal{L}}}_{1}\) norm of the estimation error is chosen as an optimality criterion. The noise intensity depends on the state being estimated. The numerical solution algorithms involve not the original continuous-time observations, but the ones discretized by time. A feature of the proposed algorithms is that they take into account the probability of several jumps in the estimated state on the time interval of discretization. The main results are the statements on the accuracy of the approximate solution of the filtering problem, depending on the number of jumps taken into account for the estimated state, on the discretization step, and on the numerical integration scheme applied. These statements provide a theoretical basis for the subsequent analysis of particular numerical schemes to implement the solution of the filtering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wonham, W.Some Applications of Stochastic Differential Equations to Optimal Nonlinear Filtering, SIAM J. Control Optim., 1964, pp.347–369.

  2. Rabiner, L. R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc.IEEE 77, 257–286 (1989).

    Article  Google Scholar 

  3. Ephraim, Y. & Merhav, N. Hidden Markov Processes. IEEE Trans. Inform. Theory 48(no.6), 1518–1569 (2002).

    Article  MathSciNet  Google Scholar 

  4. Cappé, O., Moulines, E. & Ryden, T. Inference in Hidden Markov Models. (Springer, Berlin, 2005).

    Book  Google Scholar 

  5. Elliott, R. J., Aggoun, L. & Moore, J. B. Hidden Markov Models: Estimation and Control. (Springer, New York, 2008).

    MATH  Google Scholar 

  6. Kloeden, P. & Platen, E. Numerical Solution of Stochastic Differential Equations. (Springer, Berlin, 1992).

    Book  Google Scholar 

  7. Kahaner, D., Moler, C. & Nash, S. Numerical Methods and Software. (New Jersey, Prentice Hill, 1989).

    MATH  Google Scholar 

  8. Isaacson, E. & Keller, H. Analysis of Numerical Methods. (Dover, New York, 1994).

    MATH  Google Scholar 

  9. Stoer, J. & Bulirsch, R. Introduction to Numerical Analysis. (Springer, New York, 1993).

    Book  Google Scholar 

  10. Kushner, H. J. Probability Methods for Approximations in Stochastic Control and for Elliptic Equations. (Academic, New York, 1977). Translated under the title Veroyatnostnye metody approksimatsii v stokhasticheskikh zadachakh upravleniya i teorii ellipticheskikh uravnenii, Moscow: Fizmatlit, 1985.

    MATH  Google Scholar 

  11. Kushner, H. & Dupuis, P. Numerical Methods for Stochastic Control Problems in Continuous Time. (Springer, New York, 2001).

    Book  Google Scholar 

  12. Ito, K. & Rozovskii, B. Approximation of the Kushner Equation for Nonlinear Filtering. SIAM J.Control Optim. 38(no.3), 893–915 (2000).

    Article  MathSciNet  Google Scholar 

  13. Clark, J.The Design of Robust Approximations to the Stochastic Differential Equations of Nonlinear Filtering, Communication Systems and Random Process Theory, Skwirzynski, J.K., Ed., Amsterdam: Sijthoff and Noordhoff, 1978.

  14. Malcolm, V., Elliott, R., and van der Hoek, J.On the Numerical Stability of Time-discretized State Estimation via Clark Transformations, Proc. 42nd IEEE Conf. Decis. Control, 2003, Maui, pp.1406–1412.

  15. Yin, G., Zhang, Q. & Liu, Y. Discrete-time Approximation of Wonham Filters. J.Control Theory Appl. no.2, 1–10 (2004).

    MathSciNet  MATH  Google Scholar 

  16. Platen, E. & Bruti-Liberati, N. Numerical Solution of Stochastic Differential Equations with Jumps in Finance. (Springer, Berlin, 2010).

    Book  Google Scholar 

  17. Crisan, D., Kouritzin, M. & Xiong, J. Nonlinear Filtering with Signal Dependent Observation Noise. Electron. J. Probab. no.14, 1863–1883 (2009).

    Article  MathSciNet  Google Scholar 

  18. Dragan, V., Morozan, T. & Stoica, A. Mathematical Methods in Robust Control of Discrete-Time Linear StochasticSystems. (Springer, New York, 2010).

    Book  Google Scholar 

  19. Dragan, V. & Aberkane, S. \({{\mathcal{H}}}_{2}\)-optimal Filtering for Continuous-time Periodic Linear Stochastic Systems with State-dependent Noise. Syst. Control Lett. no.66, 35–42 (2014).

    Article  Google Scholar 

  20. Borisov, A. V. Wonham Filtering by Observations with Multiplicative Noises. Autom. Remote Control 79(no.1), 39–50 (2018).

    Article  MathSciNet  Google Scholar 

  21. Borisov, A. V. Application of Optimal Filtering Methods for On-Line Estimation of Queueing Network States. Autom. Remote Control 77(no.2), 277–296 (2016).

    Article  MathSciNet  Google Scholar 

  22. Huber, P. Robust Statistics. (Wiley, New York, 1981). Translated under the title Robastnost’ v statistike, Moscow: Mir, 1984.

    Book  Google Scholar 

  23. Anderson, B. & Moore, J. Optimal Filtering. (Prentice Hill, New Jersey, 1979).

    MATH  Google Scholar 

  24. Takeuchi, Y. & Akashi, H. Least-squares State Estimation of Systems with State-dependent Observation Noise. Automatica 21(no.3), 303–313 (1985).

    Article  MathSciNet  Google Scholar 

  25. Borisov, A. V. Filtering of Markov Jump Processes by Discretized Observations. Inform. Primenen. 12(no.3), 115–121 (2018).

    MathSciNet  Google Scholar 

  26. Bäuerle, N., Gilitschenski, I. & Hanebeck, U. Exact and Approximate Hidden Markov Chain Filters Based on Discrete Observations. Statist. Risk Modeling 32(no.3-4), 159–176 (2016).

    MathSciNet  MATH  Google Scholar 

  27. James, M., Krishnamurthy, V. & LeGland, F. Time Discretization of Continuous-Time Filters and Smoothers for HMM Parameter Estimation. IEEE Trans. Autom. Control 42(no.2), 593–605 (1996).

    MATH  Google Scholar 

  28. Bertsekas, D. P. & Shreve, S. E. Stochastic Optimal Control: The Discrete-Time Case. (Academic, New York, 1978). Translated under the title Stokhasticheskoe optimal’noe upravlenie. Sluchai diskretnogo vremeni, Moscow: Fizmatlit, 1985.

    MATH  Google Scholar 

  29. R, Liptser, Sh. & Shiryaev, A. N. Statistika sluchainykh protsessov. 1st ed (Nauka, Moscow, 1974). Translated under the title Statistics of Random Processes I. General Theory, New York: Springer-Verlag, 1977.

    Google Scholar 

  30. Cvitanić, J., Liptser, R. & Rozovskii, B. A Filtering Approach to Tracking Volatility from Prices Observed at Random Times. Annals Appl. Probab. 16(no.3), 1633–1652 (2006).

    Article  MathSciNet  Google Scholar 

  31. Borovkov, A.A.Asimptoticheskie metody v teorii massovogo obsluzhivaniya, Moscow: Fizmatlit, 1995, 2nd ed. Translated under the title Asymptotic Methods in Queuing Theory (Probability & Mathematical Statistics), New York: Wiley, 1984, 1st ed.

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix

Proof of Theorem 1. Using the notations Ξr ≜ ξ1ξ2ξr and Θr ≜ θ1θ2θr for the random matrices, together with the estimates \({\widehat{x}}_{r}\) and \({\overline{x}}_{r}(s)\), write the explicit-form expression

$${\widehat{x}}_{r}={\left({\bf{1}}{\Theta }_{r}^{\top }\pi \right)}^{-1}{\Theta }_{r}^{\top }\pi,\qquad {\overline{x}}_{r}(s)={\left({\bf{1}}{\Xi }_{r}^{\top }\pi \right)}^{-1}{\Xi }_{r}^{\top }\pi .$$

From Definition (4.2) it follows that \({\xi }_{q}^{kj}\leqslant {\theta }_{q}^{kj}\). Therefore, the matrix Θr − Ξr contains nonnegative elements only. For the sake of brevity, the dependence on r in Ξr and Θr will be omitted. The following chain of inequalities holds:

$$\begin{array}{cccc}{\rm{E}}\left\{{\left\Vert {\widehat{x}}_{r}-{\overline{x}}_{r}(s)\right\Vert }_{1}\right\}={\rm{E}}\left\{{\left\Vert \frac{1}{{\bf{1}}{\Theta }^{\top }\pi }{\Theta }^{\top }\pi -\frac{1}{{\bf{1}}{\Xi }^{\top }\pi }{\Xi }^{\top }\pi \right\Vert }_{1}\right\}\\ ={\rm{E}}\left\{\frac{1}{{\bf{1}}{\Theta }^{\top }\pi {\bf{1}}{\Xi }^{\top }\pi }{\left\Vert {\bf{1}}{\Xi }^{\top }\pi {(\Theta -\Xi )}^{\top }\pi -{\bf{1}}{(\Theta -\Xi )}^{\top }\pi {\Xi }^{\top }\pi \right\Vert }_{1}\right\}\\ \leqslant {\rm{E}}\left\{\frac{1}{{\bf{1}}{\Theta }^{\top }\pi {\bf{1}}{\Xi }^{\top }\pi }\left({\bf{1}}{\Xi }^{\top }\pi \parallel {(\Theta -\Xi )}^{\top }\pi {\parallel }_{1}+{\bf{1}}{(\Theta -\Xi )}^{\top }\pi \parallel {\Xi }^{\top }\pi {\parallel }_{1}\right)\right\}\\ =2{\rm{E}}\left\{\frac{1}{{\bf{1}}{\Theta }^{\top }\pi }{\bf{1}}{(\Theta -\Xi )}^{\top }\pi \right\}.\end{array}$$
(A.1)

Consider the auxiliary estimate

$${\breve{x}}_{r}\triangleq {\rm{E}}\left\{{X}_{{t}_{r}}{{\bf{I}}}_{{A}_{r}^{s}}(\omega )| {{\mathcal{O}}}_{r}\right\}.$$

According to the abstract form of Bayes’s rule,

$${\breve{x}}_{r}=\frac{1}{{\bf{1}}{\Theta }^{\top }\pi }{\Xi }^{\top }\pi $$

and

$${\widehat{x}}_{r}-{\breve{x}}_{r}={\rm{E}}\left\{{X}_{{t}_{r}}{{\bf{I}}}_{{\overline{a}}_{r}^{s}}(\omega )| {{\mathcal{O}}}_{r}\right\}=\frac{1}{{\bf{1}}{\Theta }^{\top }\pi }{(\Theta -\Xi )}^{\top }\pi .$$
(A.2)

From (A.1) and (A.2) it follows that, for r = 1 and for all π ∈ Π,

$$\begin{array}{cc}{\rm{E}}\left\{{\left\Vert {\widehat{x}}_{1}-{\overline{x}}_{1}(s)\right\Vert }_{1}\right\}\leqslant 2{\rm{E}}\left\{{\left\Vert {\rm{E}}\left\{{X}_{{t}_{1}}{{\bf{I}}}_{{\overline{a}}_{1}^{s}}(\omega )| {{\mathcal{O}}}_{1}\right\}\right\Vert }_{1}\right\}\\ =2{\rm{E}}\left\{\mathop{\sum }\limits_{n=1}^{N}{\rm{E}}\left\{{X}_{{t}_{1}}^{n}{{\bf{I}}}_{{\overline{a}}_{1}^{s}}(\omega )| {{\mathcal{O}}}_{1}\right\}\right\}=2{\rm{E}}\left\{{\rm{E}}\left\{{{\bf{I}}}_{{\overline{a}}_{1}^{s}}(\omega )| {{\mathcal{O}}}_{1}\right\}\right\}=2{\rm{P}}\left\{{\overline{a}}_{1}^{s}\right\}.\end{array}$$
(A.3)

The process \({N}_{t}^{X}\) representing the total number of state jumps for Xt is a counting process, and its quadratic characteristic has the form

$${\langle {N}^{X},{N}^{X}\rangle }_{t}=-\mathop{\int}\limits_{0}^{t}\mathop{\sum }\limits_{n=1}^{N}{\lambda }_{nn}{X}_{s}^{n}ds.$$

Therefore, the requisite probability can be estimated from above as

$${\rm{P}}\left\{{\overline{a}}_{1}^{s}\right\}\leqslant {e}^{-\overline{\lambda }h}\mathop{\sum }\limits_{k=s+1}^{\infty }\frac{{(\overline{\lambda }h)}^{k}}{k!}={C}_{1}\frac{{(\overline{\lambda }h)}^{s+1}}{(s+1)!}.$$
(A.4)

In combination with (A.3), this inequality implies \(\sigma (s)\leqslant 2{C}_{1}\frac{{(\overline{\lambda }h)}^{s+1}}{(s+1)!},\) i.e., the local accuracy estimate (4.7) is true.

The Markov property of the pair \(({X}_{t},{N}_{t}^{X})\) and (A.4) can be used for obtaining an upper bound for the probability \({\rm{P}}\left\{{\overline{a}}_{r}^{s}\right\}\) as well:

$${\rm{P}}\left\{{\overline{a}}_{r}^{s}\right\}\leqslant 1-{\left(1-{C}_{1}\frac{{(\overline{\lambda }h)}^{s+1}}{(s+1)!}\right)}^{r}.$$

This result finally yields the global accuracy estimate (4.8). The proof of Theorem 1 is complete.

Proof of Theorem 2. Well,

$${\widetilde{x}}_{1}={({\bf{1}}{\psi }_{1}^{\top }\pi )}^{-1}{\psi }_{1}^{\top }\pi,\quad {\overline{x}}_{1}={({\bf{1}}{\xi }_{1}^{\top }\pi )}^{-1}{\xi }_{1}^{\top }\pi \quad {\rm{and}}\quad {\Delta }_{1}={\widetilde{x}}_{1}-{\overline{x}}_{1}.$$

Using the properties of matrix operations, write

$$[{\gamma }^{\top }\pi {\bf{1}}-{\bf{1}}{\gamma }^{\top }\pi I]{\gamma }^{\top }\pi =0.$$

Both estimates have stability, and consequently \(\parallel {\widetilde{x}}_{1}{\parallel }_{1}=\parallel {\overline{x}}_{1}{\parallel }_{1}=1\). The following chain of inequalities holds:

$$\begin{array}{cccc}\parallel {\Delta }_{1}{\parallel }_{1}=\frac{1}{{\bf{1}}{\psi }_{1}^{\top }\pi {\bf{1}}{\xi }_{1}^{\top }\pi }{\left\Vert {\bf{1}}{\xi }_{1}^{\top }\pi {\psi }_{1}^{\top }\pi -{\bf{1}}{\psi }_{1}^{\top }\pi {\xi }_{1}^{\top }\pi \right\Vert }_{1}=\frac{1}{{\bf{1}}{\psi }_{1}^{\top }\pi {\bf{1}}{\xi }_{1}^{\top }\pi }{\left\Vert {\bf{1}}{\xi }_{1}^{\top }\pi {\gamma }_{1}^{\top }\pi -{\bf{1}}{\gamma }_{1}^{\top }\pi {\xi }_{1}^{\top }\pi \right\Vert }_{1}\\ =\frac{1}{{\bf{1}}{\psi }_{1}^{\top }\pi {\bf{1}}{\xi }_{1}^{\top }\pi }{\left\Vert \left[{\gamma }_{1}^{\top }\pi {\bf{1}}-{\bf{1}}{\gamma }_{1}^{\top }\pi I\right]{\xi }_{1}^{\top }\pi \right\Vert }_{1}=\frac{1}{{\bf{1}}{\psi }_{1}^{\top }\pi {\bf{1}}{\xi }_{1}^{\top }\pi }{\left\Vert \left[{\gamma }_{1}^{\top }\pi {\bf{1}}-{\bf{1}}{\gamma }_{1}^{\top }\pi I\right]\left[{\xi }_{1}^{\top }\pi +{\gamma }_{1}^{\top }\pi \right]\right\Vert }_{1}\\ =\frac{1}{{\bf{1}}{\xi }_{1}^{\top }\pi }{\left\Vert \left[{\gamma }_{1}^{\top }\pi {\bf{1}}-{\bf{1}}{\gamma }_{1}^{\top }\pi I\right]{\widetilde{X}}_{1}\right\Vert }_{1}\leqslant \frac{1}{{\bf{1}}{\xi }_{1}^{\top }\pi }{\left\Vert \left[{\gamma }_{1}^{\top }\pi {\bf{1}}-{\bf{1}}{\gamma }_{1}^{\top }\pi I\right]\right\Vert }_{1}{\left\Vert {\widetilde{X}}_{1}\right\Vert }_{1}\\ \leqslant 2\frac{{\bf{1}}{\overline{\gamma }}_{1}^{\top }\pi }{{\bf{1}}{\xi }_{1}^{\top }\pi }=\mathop{\sum }\limits_{i=1}^{N}{\pi }_{i}\frac{\mathop{\sum }\limits_{j=1}^{N}{\overline{\gamma }}_{1}^{ij}}{\mathop{\sum }\limits_{k,\ell =1}^{N}{\xi }_{1}^{k\ell }{\pi }_{k}}.\end{array}$$

In combination with (5.7) and (A.7), this inequality leads to

$${\rm{E}}\left\{{{\bf{I}}}_{{a}_{1}^{s}}(\omega )\parallel {\Delta }_{1}{\parallel }_{1}\right\}\leqslant 2\mathop{\sum }\limits_{i=1}^{N}{\pi }_{i}\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}\mathop{\sum }\limits_{i=1}^{N}{\overline{\gamma }}^{ij}(y)dy\leqslant 2\delta .$$

The first inequality in (5.8) follows from the fact that the inequality above is valid for any π ∈ Π.

Define random matrices representing functions of ξr and ψr:

$$\begin{array}{ccc}{\Xi }_{q,r}\triangleq \left\{\begin{array}{ll}{\xi }_{q}{\xi }_{q+1}\ldots {\xi }_{r}&\,\text{if}\,\,q\leqslant r\\ I&\,\text{otherwise}\,,\end{array}\right.\\ {\Psi }_{q,r}\triangleq \left\{\begin{array}{ll}{\psi }_{q}{\xi }_{q+1}\ldots {\psi }_{r}&\,\text{if}\,\,q\leqslant r\\ I&\,\text{otherwise}\,,\end{array}\right.\\ {\Gamma }_{q,r}\triangleq {\Psi }_{q,r}-{\Xi }_{q,r}.\end{array}$$

For proving Theorem 2, an auxiliary result will be needed.

Lemma 3

If \({\phi }_{r}\triangleq {\phi }_{r}({{\mathcal{Y}}}_{1},\ldots,{{\mathcal{Y}}}_{r})\) is a nonnegative \({{\mathcal{O}}}_{r}\)-measurable random variable and \({\Phi }_{r}\triangleq \frac{{\phi }_{r}}{{\bf{1}}{\Xi }_{1,r}^{\top }\pi }\), then

$${\rm{E}}\left\{{{\bf{I}}}_{{A}_{r}^{s}}(\omega ){\Phi }_{r}\right\}=\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}\ldots \mathop{\int}\limits_{{{\mathbb{R}}}^{M}}{\phi }_{r}({y}_{1},\ldots,{y}_{r})d{y}_{r}\ldots d{y}_{1}.$$
(A.5)

Proof of Lemma 3. Consider a nonnegative integrable function \({\phi }_{1}={\phi }_{1}(y):{{\mathbb{R}}}^{M}\to {{\mathbb{R}}}_{+}\) and an \({{\mathcal{O}}}_{1}\)-measurable random variable of the form

$${\Phi }_{1}\triangleq \frac{{\phi }_{1}({{\mathcal{Y}}}_{1})}{{\bf{1}}{\xi }_{1}^{\top }({{\mathcal{Y}}}_{1})\pi }=\frac{{\phi }_{1}({{\mathcal{Y}}}_{1})}{\mathop{\sum }\limits_{i,j=1}^{N}\mathop{\sum }\limits_{m=0}^{s}\mathop{\int}\limits_{{\mathcal{D}}}{\mathcal{N}}\left({{\mathcal{Y}}}_{1},fu,\mathop{\sum }\limits_{p=1}^{N}{u}^{p}{g}_{p}\right){\rho }^{i,j,m}(du){\pi }_{i}}.$$
(A.6)

Find \({\rm{E}}\left\{{{\bf{I}}}_{{a}_{1}^{s}}(\omega ){\Phi }_{1}\right\}\):

$$\begin{array}{cc}{\rm{E}}\left\{{{\bf{I}}}_{{a}_{1}^{s}}(\omega ){\Phi }_{1}\right\}=\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}\mathop{\int}\limits_{{\mathcal{D}}}\frac{{\phi }_{1}(y)\mathop{\sum }\limits_{k,\ell =1}^{N}\mathop{\sum }\limits_{n=0}^{s}{\mathcal{N}}\left(y,fv,\mathop{\sum }\limits_{q=1}^{N}{v}^{q}{g}_{q}\right){\rho }^{k,\ell,n}(dv){\pi }_{k}}{\mathop{\sum }\limits_{i,j=1}^{N}\mathop{\sum }\limits_{m=0}^{s}\mathop{\int}\limits_{{\mathcal{D}}}{\mathcal{N}}\left(y,fu,\mathop{\sum }\limits_{p=1}^{N}{u}^{p}{g}_{p}\right){\rho }^{i,j,m}(du){\pi }_{i}}dy\\ =\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}{\phi }_{1}(y)\frac{\mathop{\sum }\limits_{k,\ell =1}^{N}\mathop{\sum }\limits_{n=0}^{s}\mathop{\int}\limits_{{\mathcal{D}}}{\mathcal{N}}\left(y,fv,\mathop{\sum }\limits_{q=1}^{N}{v}^{q}{g}_{q}\right){\rho }^{k,\ell,n}(dv){\pi }_{k}}{\mathop{\sum }\limits_{i,j=1}^{N}\mathop{\sum }\limits_{m=0}^{s}\mathop{\int}\limits_{{\mathcal{D}}}{\mathcal{N}}\left(y,fu,\mathop{\sum }\limits_{p=1}^{N}{u}^{p}{g}_{p}\right){\rho }^{i,j,m}(du){\pi }_{i}}dy=\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}{\phi }_{1}(y)dy.\end{array}$$
(A.7)

Consider a nonnegative integrable function \({\phi }_{2}={\phi }_{1}({y}_{1},{y}_{2}):\,{{\mathbb{R}}}^{2M}\to {{\mathbb{R}}}_{+}\) and an \({{\mathcal{O}}}_{2}\)-measurable random variable of the form

$$\begin{array}{cc}{\Phi }_{2}\triangleq \frac{{\phi }_{1}({{\mathcal{Y}}}_{1},{{\mathcal{Y}}}_{2})}{{\bf{1}}{\Xi }_{1,2}^{\top }({{\mathcal{Y}}}_{1},{{\mathcal{Y}}}_{2})\pi }\\ =\frac{{\phi }_{2}({{\mathcal{Y}}}_{1},{{\mathcal{Y}}}_{2})}{\mathop{\sum }\limits_{i,{i}_{2},j=1}^{N}\mathop{\sum }\limits_{{m}_{1},{m}_{2}=0}^{s}\mathop{\int}\limits_{{\mathcal{D}}}\mathop{\int}\limits_{{\mathcal{D}}}{\mathcal{N}}\left({{\mathcal{Y}}}_{1},f{u}_{1},\mathop{\sum }\limits_{{p}_{1}=1}^{N}{u}^{{p}_{1}}{g}_{{p}_{1}}\right){\mathcal{N}}\left({{\mathcal{Y}}}_{2},f{u}_{2},\mathop{\sum }\limits_{{p}_{2}=1}^{N}{u}^{{p}_{2}}{g}_{{p}_{2}}\right){\rho }^{i,{i}_{2},{m}_{1}}(d{u}_{1}){\rho }^{{i}_{2},j,{m}_{2}}(d{u}_{2}){\pi }_{i}}.\end{array}$$

Find \({\rm{E}}\left\{{{\bf{I}}}_{{A}_{2}^{s}}(\omega ){\Phi }_{2}\right\}\):

$$\begin{array}{ccc}{\rm{E}}\left\{{{\bf{I}}}_{{A}_{2}^{s}}(\omega ){\Phi }_{2}\right\}=\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}{\phi }_{2}({y}_{1},{y}_{2})\\ \times \frac{\mathop{\sum }\limits_{k,{k}_{2},\ell =1}^{N}\mathop{\sum }\limits_{{n}_{1},{n}_{2}=0}^{s}\mathop{\int}\limits_{{\mathcal{D}}}\mathop{\int}\limits_{{\mathcal{D}}}{\mathcal{N}}\left({y}_{1},f{v}_{1},\mathop{\sum }\limits_{{q}_{1}=1}^{N}{v}^{{q}_{1}}{g}_{{q}_{1}}\right){\mathcal{N}}\left({y}_{2},f{v}_{2},\mathop{\sum }\limits_{{q}_{2}=1}^{N}{v}^{{q}_{2}}{g}_{{q}_{2}}\right){\rho }^{k,{k}_{2},{n}_{1}}(d{v}_{1}){\rho }^{{k}_{2},\ell,{n}_{2}}(d{v}_{2}){\pi }_{k}}{\mathop{\sum }\limits_{i,{i}_{2},j=1}^{N}\mathop{\sum }\limits_{{m}_{1},{m}_{2}=0}^{s}\mathop{\int}\limits_{{\mathcal{D}}}\mathop{\int}\limits_{{\mathcal{D}}}{\mathcal{N}}\left({y}_{1},f{u}_{1},\mathop{\sum }\limits_{{p}_{1}=1}^{N}{u}^{{p}_{1}}{g}_{{p}_{1}}\right){\mathcal{N}}\left({y}_{2},f{u}_{2},\mathop{\sum }\limits_{{p}_{2}=1}^{N}{u}^{{p}_{2}}{g}_{{p}_{2}}\right){\rho }^{i,{i}_{2},{m}_{1}}(d{u}_{1}){\rho }^{{i}_{2},j,{m}_{2}}(d{u}_{2}){\pi }_{i}}\\ \times d{y}_{2}d{y}_{1}=\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}{\phi }_{2}({y}_{1},{y}_{2})d{y}_{2}d{y}_{1}.\end{array}$$

The general case \({\rm{E}}\left\{{{\bf{I}}}_{{A}_{r}^{s}}(\omega ){\Phi }_{r}\right\}\) is considered by analogy. The proof of Lemma 3 is complete.

Now estimate from above the norm of the error \({\Delta }_{r}={\widetilde{x}}_{r}-{\overline{x}}_{r}\). From the definition of the matrices Ξ, Ψ, and Γ it follows that

$${\Gamma }_{1,r}\triangleq {\Psi }_{1,r}-{\Xi }_{1,r}=\mathop{\sum }\limits_{t=1}^{r}{\Psi }_{1,t-1}{\gamma }_{t}{\Psi }_{t+1,r}.$$
(A.8)

Performing transformations similar to those for Δ1, write

$$\parallel {\Delta }_{r}{\parallel }_{1}\leqslant \frac{1}{{\bf{1}}{\Xi }_{1,r}^{\top }\pi }{\left\Vert \left[{\Gamma }_{1,r}^{\top }\pi {\bf{1}}-{\bf{1}}{\Gamma }_{1,r}^{\top }\pi I\right]\right\Vert }_{1}\leqslant 2\mathop{\sum }\limits_{t=1}^{r}\frac{1}{{\bf{1}}{\Xi }_{1,r}^{\top }\pi }{\bf{1}}{\Psi }_{t+1,r}^{\top }{\overline{\gamma }}_{t}^{\top }{\Psi }_{1,t-1}^{\top }\pi .$$
(A.9)

For estimating the contribution of each term in (A.9), take advantage of (A.5). For the sake of simplicity, consider the case r = 3, a function \(\phi ({y}_{1},{y}_{2},{y}_{3}):{{\mathbb{R}}}^{3M}\to {{\mathbb{R}}}_{+}\) of the form

$$\phi ({y}_{1},{y}_{2},{y}_{3})={\bf{1}}{\psi }^{\top }({y}_{3}){\overline{\gamma }}^{\top }({y}_{2}){\psi }^{\top }({y}_{1})\pi,$$

and an O3-measurable random variable of the form

$$\Phi \triangleq \frac{\phi ({{\mathcal{Y}}}_{1},{{\mathcal{Y}}}_{2},{{\mathcal{Y}}}_{3})}{{\bf{1}}{\Xi }_{1,3}^{\top }({{\mathcal{Y}}}_{1},{{\mathcal{Y}}}_{2},{{\mathcal{Y}}}_{3})\pi }.$$

Estimate the following expression from above:

$$\begin{array}{ccc}{\rm{E}}\left\{{{\bf{I}}}_{{A}_{3}^{s}}(\omega )\Phi \right\}=\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}\mathop{\sum }\limits_{i,j,k,m=1}^{N}{\pi }_{i}{\psi }^{ij}({y}_{1}){\overline{\gamma }}^{jk}({y}_{2}){\psi }^{km}({y}_{3})d{y}_{3}d{y}_{2}d{y}_{1}\\ =\mathop{\sum }\limits_{i,j,k=1}^{N}{\pi }_{i}\mathop{\sum }\limits_{\ell =1}^{L}{\varrho }_{\ell }^{ij}\mathop{\int}\limits_{{{\mathbb{R}}}^{M}}{\overline{\gamma }}^{jk}({y}_{2})d{y}_{2}\mathop{\sum }\limits_{m=1}^{N}\mathop{\sum }\limits_{n=1}^{L}{\varrho }_{n}^{km}\\ ={\mathfrak{W}}\mathop{\sum }\limits_{i,j=1}^{N}{\pi }_{i}\mathop{\sum }\limits_{\ell =1}^{L}{\varrho }_{\ell }^{ij}\mathop{\sum }\limits_{k=1}^{N}\ \mathop{\int}\limits_{{{\mathbb{R}}}^{M}}{\overline{\gamma }}^{jk}({y}_{2})d{y}_{2}\leqslant {\mathfrak{W}}\delta \mathop{\sum }\limits_{i=1}^{N}{\pi }_{i}\mathop{\sum }\limits_{j=1}^{N}\mathop{\sum }\limits_{\ell =1}^{L}{\varrho }_{\ell }^{ij}\leqslant {{\mathfrak{W}}}^{2}\delta .\end{array}$$

By analogy, it can be demonstrated that for an arbitrary r ⩾ 2,

$${\rm{E}}\left\{{{\bf{I}}}_{{A}_{r}^{s}}(\omega )\frac{{\bf{1}}{\Psi }_{t+1,r}^{\top }{\overline{\gamma }}_{t}^{\top }{\Psi }_{1,t-1}^{\top }\pi }{{\bf{1}}{\Xi }_{1,r}^{\top }\pi }\right\}\leqslant {{\mathfrak{W}}}^{r-1}\delta .$$

This finally yields

$${\rm{E}}\left\{{{\bf{I}}}_{{A}_{r}^{s}}(\omega )\parallel {\Delta }_{r}{\parallel }_{1}\right\}\leqslant 2r{{\mathfrak{W}}}^{r-1}\delta,$$

the second inequality of (5.8) is immediate from the fact that the inequality above holds for any π ∈ Π.

The proof of Theorem 2 is complete.

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 19-07-00187 A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A. \({{\mathcal{L}}}_{1}\)-Optimal Filtering of Markov Jump Processes. I. Exact Solution and Numerical Implementation Schemes. Autom Remote Control 81, 1945–1962 (2020). https://doi.org/10.1134/S0005117920110016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920110016

Keywords

Navigation