Paper

Evaluation of abrupt energy transfer among turbulent plasma structures using singular value decomposition

, , , , and

Published 8 December 2020 © 2020 IOP Publishing Ltd
, , Citation M Sasaki et al 2021 Plasma Phys. Control. Fusion 63 025004 DOI 10.1088/1361-6587/abcb46

0741-3335/63/2/025004

Abstract

A method to quantify the energy transfer among turbulent structures using singular value decomposition (SVD) is presented. We apply the method to numerical turbulence data obtained from a global plasma simulation using the Hasegawa–Wakatani fluid model, in which the Kelvin–Helmholtz instability plays a dominant role. Using the SVD method, the electrostatic potential is decomposed into a background potential deformation, a zonal flow, a coherent mode and an intermittent structure. Thus there are four key structures, as distinct from the three found in conventional theory. The kinetic energy of each structure is evaluated, and the limit cycle among them is obtained. In the limit cycle, an abrupt change of the background is found to be synchronised with the period of the zonal flow. The energy transfer function of each turbulence structure, which is defined on the basis of a vorticity equation, is evaluated. This then provides physical understanding of how the limit cycle is sustained by dynamical changes in the energy transfer among structures over the its period. In addition, it is shown that the abrupt deformation of the background is caused by the non-linear self-coupling of the intermittent structure.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

Please wait… references are loading.