Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Role of αvβ6 Integrin Binding Molecules in the Diagnosis and Treatment of Cancer

Author(s): Mauricio Urquiza*, Valentina Guevara, Erika Diaz-Sana and Felipe Mora

Volume 24, Issue 21, 2020

Page: [2393 - 2411] Pages: 19

DOI: 10.2174/1385272824999200528124936

Price: $65

Abstract

Peptidic and non-peptidic αvβ6 integrin-binding molecules have been used in the clinic for detection and treatment of tumors expressing αvβ6 integrin, because this protein is expressed in malignant epithelial cells of the oral cavity, pancreas, breast, ovary, colon and stomach carcinomas but it is not expressed in healthy adult tissue except during wound healing and inflammation. This review focuses on the landscape of αvβ6 integrinbinding molecules and their use in cancer treatment and detection, and discusses recent designs for tumor detection, treatment, and immunotherapy. In the last ten years, several reviews about the αvβ6 integrin have been published but no one assessed the landscape of the αvβ6 integrin-binding molecules and their role in cancer detection and treatment. Firstly, this review describes the role of the αvβ6 integrin in normal tissues, how the expression of this protein is correlated with cancer severity and its role in cancer development. Taking into account the potential of αvβ6 integrin-binding molecules in detection and treatment of specific tumors, special attention is given to several high-affinity αvβ6 integrin-binding peptides used for tumor imaging; particularly, the αvβ6-binding peptide NAVPNLRGDLQVLAQKVART [A20FMDV2], derived from the foot and mouth disease virus. This peptide labeled with either 18F, 111In or with 68Ga has been used for PET imaging of αvβ6 integrin-positive tumors. Moreover, αvβ6 integrin-binding peptides have been used for photoacoustic and fluorescence imaging and could potentially be used in clinical application in cancer diagnosis and intraoperative imaging of αvβ6-integrin positive tumors. Additionally, non-peptidic αvβ6-binding molecules have been designed and used in the clinic for the detection and treatment of αvβ6-expressing tumors. Anti-αvβ6 integrin antibodies are another useful tool for selective identification and treatment of αvβ6 (+) tumors. The utility of these αvβ6 integrin-binding molecules as a tool for tumor detection and treatment is discussed, considering specificity, sensitivity and serum stability. Another use of the αvβ6 integrin-binding peptides is to modify the Ad5 cell tropism for inducing oncolytic activity of αvβ6-integrin positive tumor cells by expressing A20FMDV2 peptide within the fiber knob protein (Ad5NULL-A20). The newly designed oncolytic Ad5NULL-A20 virotherapy is promising for local and systemic targeting of αvβ6-overexpressing cancers. Finally, new evidence has emerged, indicating that chimeric antigen receptor (CAR) containing the αvβ6 integrin- binding peptide on top of CD28+CD3 endodomain displays a potent therapeutic activity in a diverse repertoire of solid tumor models.

Keywords: αvβ6 integrin, cancer, positron emission tomography, chimeric antigen receptor, αvβ 6-binding peptide, non-peptidic αvβ6 integrin- binding molecules.

Graphical Abstract
[1]
Renshaw, M.W.; Ren, X.D.; Schwartz, M.A. Growth factor activation of MAP kinase requires cell adhesion. EMBO J., 1997, 16(18), 5592-5599.
[http://dx.doi.org/10.1093/emboj/16.18.5592] [PMID: 9312018]
[2]
Chen, Q.; Lin, T.H.; Der, C.J.; Juliano, R.L. Integrin-mediated activation of Mitogen-Activated Protein (MAP) or extracellular signal-related kinase kinase (MEK) and kinase is independent of Ras. J. Biol. Chem., 1996, 271(30), 18122-18127.
[http://dx.doi.org/10.1074/jbc.271.30.18122] [PMID: 8663436]
[3]
Morse, E.M.; Brahme, N.N.; Calderwood, D.A. Integrin cytoplasmic tail interactions. Biochemistry, 2014, 53(5), 810-820.
[http://dx.doi.org/10.1021/bi401596q] [PMID: 24467163]
[4]
Thomas, G.J.; Nyström, M.L.; Marshall, J.F. αvβ6 integrin in wound healing and cancer of the oral cavity. J. Oral Pathol. Med., 2006, 35(1), 1-10.
[http://dx.doi.org/10.1111/j.1600-0714.2005.00374.x] [PMID: 16393247]
[5]
Peng, C.; Zou, X.; Xia, W.; Gao, H.; Li, Z.; Liu, N.; Xu, Z.; Gao, C.; He, Z.; Niu, W.; Fang, R.; Biswas, S.; Agrez, M.; Zhi, X.; Niu, J. Integrin αvβ6 plays a bi-directional regulation role between colon cancer cells and cancer-associated fibroblasts. Biosci. Rep., 2018, 38(6)BSR20180243
[http://dx.doi.org/10.1042/BSR20180243] [PMID: 30355650]
[6]
Takada, Y.; Ye, X.; Simon, S. The integrins. Genome Biol., 2007, 8(5), 215.
[http://dx.doi.org/10.1186/gb-2007-8-5-215] [PMID: 17543136]
[7]
Xie, Y.; McElwee, K.J.; Owen, G.R.; Häkkinen, L.; Larjava, H.S. Integrin β6-deficient mice show enhanced keratinocyte proliferation and retarded hair follicle regression after depilation. J. Invest. Dermatol., 2012, 132(3), 547-555.
[http://dx.doi.org/10.1038/jid.2011.381] [PMID: 22113470]
[8]
Breuss, J.M.; Gallo, J.; DeLisser, H.M.; Klimanskaya, I.V.; Folkesson, H.G.; Pittet, J.F.; Nishimura, S.L.; Aldape, K.; Landers, D.V.; Carpenter, W. Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J. Cell Sci., 1995, 108(Pt 6), 2241-2251.
[PMID: 7673344]
[9]
Mohazab, L.; Koivisto, L.; Jiang, G.; Kytömäki, L.; Haapasalo, M.; Owen, G.R.; Wiebe, C.; Xie, Y.; Heikinheimo, K.; Yoshida, T.; Smith, C.E.; Heino, J.; Häkkinen, L.; McKee, M.D.; Larjava, H. Critical role for αvβ6 integrin in enamel biomineralization. J. Cell Sci., 2013, 126(Pt 3), 732-744.
[http://dx.doi.org/10.1242/jcs.112599] [PMID: 23264742]
[10]
Niu, J.; Li, Z. The roles of integrin αvβ6 in cancer. Cancer Lett., 2017, 403, 128-137.
[http://dx.doi.org/10.1016/j.canlet.2017.06.012] [PMID: 28634043]
[11]
Campbell, I.D.; Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol., 2011, 3(3), 1-14.
[http://dx.doi.org/10.1101/cshperspect.a004994] [PMID: 21421922]
[12]
Larjava, H.; Koivisto, L.; Häkkinen, L.; Heino, J. Epithelial integrins with special reference to oral epithelia. J. Dent. Res., 2011, 90(12), 1367-1376.
[http://dx.doi.org/10.1177/0022034511402207] [PMID: 21441220]
[13]
Munger, J.S.; Huang, X.; Kawakatsu, H.; Griffiths, M.J.; Dalton, S.L.; Wu, J.; Pittet, J.F.; Kaminski, N.; Garat, C.; Matthay, M.A.; Rifkin, D.B.; Sheppard, D. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 1999, 96(3), 319-328.
[http://dx.doi.org/10.1016/S0092-8674(00)80545-0] [PMID: 10025398]
[14]
Dong, X.; Zhao, B.; Iacob, R.E.; Zhu, J.; Koksal, A.C.; Lu, C.; Engen, J.R.; Springer, T.A. Force interacts with macromolecular structure in activation of TGF-β. Nature, 2017, 542(7639), 55-59.
[http://dx.doi.org/10.1038/nature21035] [PMID: 28117447]
[15]
Yang, Z.; Mu, Z.; Dabovic, B.; Jurukovski, V.; Yu, D.; Sung, J.; Xiong, X.; Munger, J.S. Absence of integrin-mediated TGFβ1 activation in vivo recapitulates the phenotype of TGFβ1-null mice. J. Cell Biol., 2007, 176(6), 787-793.
[http://dx.doi.org/10.1083/jcb.200611044] [PMID: 17353357]
[16]
Travis, M.A.; Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol., 2014, 32(1), 51-82.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120257] [PMID: 24313777]
[17]
Robson, C.N.; Gnanapragasam, V.; Byrne, R.L.; Collins, A.T.; Neal, D.E. Transforming growth factor-beta1 up-regulates p15, p21 and p27 and blocks cell cycling in G1 in human prostate epithelium. J. Endocrinol., 1999, 160(2), 257-266.
[http://dx.doi.org/10.1677/joe.0.1600257] [PMID: 9924195]
[18]
Ansar, M.; Jan, A.; Santos-Cortez, R.L.P.; Wang, X.; Suliman, M.; Acharya, A.; Habib, R.; Abbe, I.; Ali, G.; Lee, K.; Smith, J.D.; Nickerson, D.A.; Shendure, J.; Bamshad, M.J.; Ahmad, W.; Leal, S.M. University of Washington Center for Mendelian Genomics. Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability. Eur. J. Hum. Genet., 2016, 24(8), 1223-1227.
[http://dx.doi.org/10.1038/ejhg.2015.260] [PMID: 26695873]
[19]
Huang, X.; Wu, J.; Spong, S.; Sheppard, D. The integrin αvβ6 is critical for keratinocyte migration on both its known ligand, fibronectin, and on vitronectin. J. Cell Sci., 1998, 111(Pt 15), 2189-2195.
[PMID: 9664040]
[20]
Eslami, A.; Gallant-Behm, C.L.; Hart, D.A.; Wiebe, C.; Honardoust, D.; Gardner, H.; Häkkinen, L.; Larjava, H.S. Expression of integrin alphavbeta6 and TGF-β in scarless vs scar-forming wound healing. J. Histochem. Cytochem., 2009, 57(6), 543-557.
[http://dx.doi.org/10.1369/jhc.2009.952572] [PMID: 19223298]
[21]
Lee, C.; Lee, C.; Lee, S.; Siu, A.; Ramos, D.M. The cytoplasmic extension of the integrin β6 subunit regulates epithelial-to-mesenchymal transition. Anticancer Res., 2014, 34(2), 659-664.
[PMID: 24510996]
[22]
Niu, J.; Dorahy, D.J.; Gu, X.; Scott, R.J.; Draganic, B.; Ahmed, N.; Agrez, M.V. Integrin expression in colon cancer cells is regulated by the cytoplasmic domain of the β6 integrin subunit. Int. J. Cancer, 2002, 99(4), 529-537.
[http://dx.doi.org/10.1002/ijc.10397] [PMID: 11992542]
[23]
Stewart, P.L.; Nemerow, G.R. Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol., 2007, 15(11), 500-507.
[http://dx.doi.org/10.1016/j.tim.2007.10.001] [PMID: 17988871]
[24]
Berryman, S.; Clark, S.; Monaghan, P.; Jackson, T. Early events in integrin αvβ6-mediated cell entry of foot-and-mouth disease virus. J. Virol., 2005, 79(13), 8519-8534.
[http://dx.doi.org/10.1128/JVI.79.13.8519-8534.2005] [PMID: 15956594]
[25]
Heikkilä, O.; Susi, P.; Tevaluoto, T.; Härmä, H.; Marjomäki, V.; Hyypiä, T.; Kiljunen, S. Internalization of coxsackievirus A9 is mediated by β2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin. J. Virol., 2010, 84(7), 3666-3681.
[http://dx.doi.org/10.1128/JVI.01340-09] [PMID: 20089652]
[26]
Chesnokova, L.S.; Nishimura, S.L.; Hutt-Fletcher, L.M. Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 or αvβ8. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20464-20469.
[http://dx.doi.org/10.1073/pnas.0907508106] [PMID: 19920174]
[27]
Wei, Y.; Zhang, Y.; Cai, H.; Mirza, A.M.; Iorio, R.M.; Peeples, M.E.; Niewiesk, S.; Li, J. Roles of the putative integrin-binding motif of the human metapneumovirus fusion (f) protein in cell-cell fusion, viral infectivity, and pathogenesis. J. Virol., 2014, 88(8), 4338-4352.
[http://dx.doi.org/10.1128/JVI.03491-13] [PMID: 24478423]
[28]
Bandyopadhyay, A.; Raghavan, S. Defining the role of integrin αvβ6 in cancer. Curr. Drug Targets, 2009, 10(7), 645-652.
[http://dx.doi.org/10.2174/138945009788680374] [PMID: 19601768]
[29]
Patsenker, E.; Wilkens, L.; Banz, V.; Osterreicher, C.H.; Weimann, R.; Eisele, S.; Keogh, A.; Stroka, D.; Zimmermann, A.; Stickel, F. The alphavbeta6 integrin is a highly specific immunohistochemical marker for cholangiocarcinoma. J. Hepatol., 2010, 52(3), 362-369.
[http://dx.doi.org/10.1016/j.jhep.2009.12.006] [PMID: 20137822]
[30]
Moore, K.M.; Thomas, G.J.; Duffy, S.W.; Warwick, J.; Gabe, R.; Chou, P.; Ellis, I.O.; Green, A.R.; Haider, S.; Brouilette, K.; Saha, A.; Vallath, S.; Bowen, R.; Chelala, C.; Eccles, D.; Tapper, W.J.; Thompson, A.M.; Quinlan, P.; Jordan, L.; Gillett, C.; Brentnall, A.; Violette, S.; Weinreb, P.H.; Kendrew, J.; Barry, S.T.; Hart, I.R.; Jones, J.L.; Marshall, J.F. Therapeutic targeting of integrin αvβ6 in breast cancer. J. Natl. Cancer Inst., 2014, 106(8)dju169
[http://dx.doi.org/10.1093/jnci/dju169] [PMID: 24974129]
[31]
Schittenhelm, J.; Klein, A.; Tatagiba, M.S.; Meyermann, R.; Fend, F.; Goodman, S.L.; Sipos, B. Comparing the expression of integrins αvβ3, αvβ5, αvβ6, αvβ8, fibronectin and fibrinogen in human brain metastases and their corresponding primary tumors. Int. J. Clin. Exp. Pathol., 2013, 6(12), 2719-2732.
[PMID: 24294359]
[32]
Berghoff, A.S.; Kovanda, A.K.; Melchardt, T.; Bartsch, R.; Hainfellner, J.A.; Sipos, B.; Schittenhelm, J.; Zielinski, C.C.; Widhalm, G.; Dieckmann, K.; Weller, M.; Goodman, S.L.; Birner, P.; Preusser, M. αvβ3, αvβ5 and αvβ6 integrins in brain metastases of lung cancer. Clin. Exp. Metastasis, 2014, 31(7), 841-851.
[http://dx.doi.org/10.1007/s10585-014-9675-0] [PMID: 25150423]
[33]
Ramos, D.M.; Dang, D.; Sadler, S. The role of the integrin alpha v beta6 in regulating the epithelial to mesenchymal transition in oral cancer. Anticancer Res., 2009, 29(1), 125-130.
[PMID: 19331141]
[34]
Niu, J.; Gu, X.; Turton, J.; Meldrum, C.; Howard, E.W.; Agrez, M. Integrin-mediated signalling of gelatinase B secretion in colon cancer cells. Biochem. Biophys. Res. Commun., 1998, 249(1), 287-291.
[http://dx.doi.org/10.1006/bbrc.1998.9128] [PMID: 9705874]
[35]
Morgan, M.R.; Thomas, G.J.; Russell, A.; Hart, I.R.; Marshall, J.F. The integrin cytoplasmic-tail motif EKQKVDLSTDC is sufficient to promote tumor cell invasion mediated by matrix metalloproteinase (MMP)-2 or MMP-9. J. Biol. Chem., 2004, 279(25), 26533-26539.
[http://dx.doi.org/10.1074/jbc.M401736200] [PMID: 15067014]
[36]
Peng, C.; Gao, H.; Niu, Z.; Wang, B.; Tan, Z.; Niu, W.; Liu, E.; Wang, J.; Sun, J.; Shahbaz, M.; Agrez, M.; Niu, J. Integrin αvβ6 and transcriptional factor Ets-1 act as prognostic indicators in colorectal cancer. Cell Biosci., 2014, 4(1), 53.
[http://dx.doi.org/10.1186/2045-3701-4-53] [PMID: 25264483]
[37]
Sun, Q.; Sun, F.; Wang, B.; Liu, S.; Niu, W.; Liu, E.; Peng, C.; Wang, J.; Gao, H.; Liang, B.; Niu, Z.; Zou, X.; Niu, J. Interleukin-8 promotes cell migration through integrin αvβ6 upregulation in colorectal cancer. Cancer Lett., 2014, 354(2), 245-253.
[http://dx.doi.org/10.1016/j.canlet.2014.08.021] [PMID: 25150782]
[38]
Allen, M.D.; Marshall, J.F.; Jones, J.L. αvβ6 Expression in myoepithelial cells: a novel marker for predicting DCIS progression with therapeutic potential. Cancer Res., 2014, 74(21), 5942-5947.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1841] [PMID: 25320004]
[39]
de Geus, S.W.L.; Boogerd, L.S.F.; Swijnenburg, R.J.; Mieog, J.S.D.; Tummers, W.S.F.J.; Prevoo, H.A.J.M.; Sier, C.F.M.; Morreau, H.; Bonsing, B.A.; van de Velde, C.J.H.; Vahrmeijer, A.L.; Kuppen, P.J. Selecting tumor-specific molecular targets in pancreatic adenocarcinoma: paving the way for image-guided pancreatic surgery. Mol. Imaging Biol., 2016, 18(6), 807-819.
[http://dx.doi.org/10.1007/s11307-016-0959-4] [PMID: 27130234]
[40]
Tummers, W.S.; Farina-Sarasqueta, A.; Boonstra, M.C.; Prevoo, H.A.; Sier, C.F.; Mieog, J.S.; Morreau, J.; van Eijck, C.H.; Kuppen, P.J.; van de Velde, C.J.; Bonsing, B.A.; Vahrmeijer, A.L.; Swijnenburg, R.J. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma. Oncotarget, 2017, 8(34), 56816-56828.
[http://dx.doi.org/10.18632/oncotarget.18232] [PMID: 28915633]
[41]
Tummers, W.S.; Kimura, R.H.; Abou-Elkacem, L.; Beinat, C.; Vahrmeijer, A.L.; Swijnenburg, R.J.; Willmann, J.K.; Gambhir, S.S. Development and preclinical validation of a cysteine knottin peptide targeting integrin αvβ6 for near-infrared fluorescent-guided surgery in pancreatic cancer. Clin. Cancer Res., 2018, 24(7), 1667-1676.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2491] [PMID: 29298796]
[42]
Reader, C.S.; Vallath, S.; Steele, C.W.; Haider, S.; Brentnall, A.; Desai, A.; Moore, K.M.; Jamieson, N.B.; Chang, D.; Bailey, P.; Scarpa, A.; Lawlor, R.; Chelala, C.; Keyse, S.M.; Biankin, A.; Morton, J.P.; Evans, T.J.; Barry, S.T.; Sansom, O.J.; Kocher, H.M.; Marshall, J.F. The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. J. Pathol., 2019, 249(3), 332-342.
[http://dx.doi.org/10.1002/path.5320] [PMID: 31259422]
[43]
Lian, P.L.; Liu, Z.; Yang, G.Y.; Zhao, R.; Zhang, Z.Y.; Chen, Y.G.; Zhuang, Z.N.; Sen Xu, K. Integrin αvβ6 and matrix metalloproteinase 9 correlate with survival in gastric cancer observational study. World J. Gastroenterol., 2016, 22(14), 3852-3859.
[http://dx.doi.org/10.3748/wjg.v22.i14.3852] [PMID: 27076771]
[44]
Liang, D.; Xu, W.; Zhang, Q.; Tao, B-B. Study on the effect of integrin αvβ6 on proliferation and apoptosis of cervical cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(12), 2811-2815.
[PMID: 28682441]
[45]
Yan, P.; Zhu, H.; Yin, L.; Wang, L.; Xie, P.; Ye, J.; Jiang, X.; He, X. Integrin αvβ6 promotes lung cancer proliferation and metastasis through upregulation of IL-8-mediated MAPK/ERK signaling. Transl. Oncol., 2018, 11(3), 619-627.
[http://dx.doi.org/10.1016/j.tranon.2018.02.013] [PMID: 29573639]
[46]
Ahmed, N.; Pansino, F.; Baker, M.; Rice, G.; Quinn, M. Association between alphavbeta6 integrin expression, elevated p42/44 kDa MAPK, and plasminogen-dependent matrix degradation in ovarian cancer. J. Cell. Biochem., 2002, 84(4), 675-686.
[http://dx.doi.org/10.1002/jcb.10080] [PMID: 11835393]
[47]
Wang, W.C.; Wang, Y.; Sun, C.J. Expression of Urokinase-type plasminogen activator and its receptor protein in synovial tissues from osteoarthritis. Hunan yi ke da xue xue bao, 2001, 26(3), 257-260.
[48]
Saldanha, R.G.; Molloy, M.P.; Bdeir, K.; Cines, D.B.; Song, X.; Uitto, P.M.; Weinreb, P.H.; Violette, S.M.; Baker, M.S. Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy. J. Proteome Res., 2007, 6(3), 1016-1028.
[http://dx.doi.org/10.1021/pr060518n] [PMID: 17330942]
[49]
Koivisto, L.; Bi, J.; Häkkinen, L.; Larjava, H. Integrin αvβ6: Structure, function and role in health and disease. Int. J. Biochem. Cell Biol., 2018, 99, 186-196.
[http://dx.doi.org/10.1016/j.biocel.2018.04.013] [PMID: 29678785]
[50]
Wendt, M.K.; Tian, M.; Schiemann, W.P. Deconstructing the mechanisms and consequences of TGF-β-induced EMT during cancer progression. Cell Tissue Res., 2012, 347(1), 85-101.
[http://dx.doi.org/10.1007/s00441-011-1199-1] [PMID: 21691718]
[51]
Inman, G.J. Switching TGFβ from a tumor suppressor to a tumor promoter. Curr. Opin. Genet. Dev., 2011, 21(1), 93-99.
[http://dx.doi.org/10.1016/j.gde.2010.12.004] [PMID: 21251810]
[52]
Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4)a000034
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[53]
Principe, D.R.; Doll, J.A.; Bauer, J.; Jung, B.; Munshi, H.G.; Bartholin, L.; Pasche, B.; Lee, C.; Grippo, P.J. TGF-β: duality of function between tumor prevention and carcinogenesis. J. Natl. Cancer Inst., 2014, 106(2)djt369
[http://dx.doi.org/10.1093/jnci/djt369] [PMID: 24511106]
[54]
Fedele, C.; Singh, A.; Zerlanko, B.J.; Iozzo, R.V.; Languino, L.R. The αvβ6 integrin is transferred intercellularly via exosomes. J. Biol. Chem., 2015, 290(8), 4545-4551.
[http://dx.doi.org/10.1074/jbc.C114.617662] [PMID: 25568317]
[55]
Dutta, A.; Li, J.; Lu, H.; Akech, J.; Pratap, J.; Wang, T.; Zerlanko, B.J.; FitzGerald, T.J.; Jiang, Z.; Birbe, R.; Wixted, J.; Violette, S.M.; Stein, J.L.; Stein, G.S.; Lian, J.B.; Languino, L.R. Integrin αvβ6 promotes an osteolytic program in cancer cells by upregulating MMP2. Cancer Res., 2014, 74(5), 1598-1608.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1796] [PMID: 24385215]
[56]
Diao, L.; Meibohm, B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin. Pharmacokinet., 2013, 52(10), 855-868.
[http://dx.doi.org/10.1007/s40262-013-0079-0] [PMID: 23719681]
[57]
DiCara, D.; Rapisarda, C.; Sutcliffe, J.L.; Violette, S.M.; Weinreb, P.H.; Hart, I.R.; Howard, M.J.; Marshall, J.F. Structure-function analysis of Arg-Gly-Asp helix motifs in αvβ6 integrin ligands. J. Biol. Chem., 2007, 282(13), 9657-9665.
[http://dx.doi.org/10.1074/jbc.M610461200] [PMID: 17244604]
[58]
Slack, R.J.; Hafeji, M.; Rogers, R.; Ludbrook, S.B.; Marshall, J.F.; Flint, D.J.; Pyne, S.; Denyer, J.C. Pharmacological characterization of the αvβ6 integrin binding and internalization kinetics of the foot-and-mouth disease virus derived peptide A20FMDV2. Pharmacology, 2016, 97(3-4), 114-125.
[http://dx.doi.org/10.1159/000443180] [PMID: 26734728]
[59]
Hausner, S.H.; DiCara, D.; Marik, J.; Marshall, J.F.; Sutcliffe, J.L. Use of a peptide derived from foot-and-mouth disease virus for the noninvasive imaging of human cancer: generation and evaluation of 4-[18F]fluorobenzoyl A20FMDV2 for in vivo imaging of integrin αvβ6 expression with positron emission tomography. Cancer Res., 2007, 67(16), 7833-7840.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1026] [PMID: 17699789]
[60]
Keat, N.; Kenny, J.; Chen, K.; Onega, M.; Garman, N.; Slack, R.J.; Parker, C.A.; Lumbers, R.T.; Hallett, W.; Saleem, A.; Passchier, J.; Lukey, P.T. A microdose PET study of the safety, immunogenicity, biodistribution, and radiation dosimetry of 18F-FB-A20FMDV2 for imaging the integrin αvβ6. J. Nucl. Med. Technol., 2018, 46(2), 136-143.
[http://dx.doi.org/10.2967/jnmt.117.203547] [PMID: 29438002]
[61]
Saha, A.; Ellison, D.; Thomas, G.J.; Vallath, S.; Mather, S.J.; Hart, I.R.; Marshall, J.F. High-resolution in vivo imaging of breast cancer by targeting the pro-invasive integrin αvβ6. J. Pathol., 2010, 222(1), 52-63.
[PMID: 20629113]
[62]
John, A.E.; Luckett, J.C.; Tatler, A.L.; Awais, R.O.; Desai, A.; Habgood, A.; Ludbrook, S.; Blanchard, A.D.; Perkins, A.C.; Jenkins, R.G. Preclinical SPECT/CT imaging of αvβ6 integrins for molecular stratification of idiopathic pulmonary fibrosis. J. Nucl. Med., 2013, 54(12), 2146-2152.
[http://dx.doi.org/10.2967/jnumed.113.120592]]
[63]
Hausner, S.H.; Carpenter, R.D.; Bauer, N.; Sutcliffe, J.L. Evaluation of an integrin αvβ6-specific peptide labeled with [18F]fluorine by copper-free, strain-promoted click chemistry. Nucl. Med. Biol., 2013, 40(2), 233-239.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.10.007] [PMID: 23265667]
[64]
Hausner, S.H.; Bauer, N.; Sutcliffe, J.L. In vitro and in vivo evaluation of the effects of aluminum [18F]fluoride radiolabeling on an integrin αvβ6-specific peptide. Nucl. Med. Biol., 2014, 41(1), 43-50.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.09.009] [PMID: 24267053]
[65]
Hausner, S.H.; Bauer, N.; Hu, L.Y.; Knight, L.M.; Sutcliffe, J.L. The effect of bi-terminal PEGylation of an integrin αvβ6-targeted 18F peptide on pharmacokinetics and tumor uptake. J. Nucl. Med., 2015, 56(5), 784-790.
[http://dx.doi.org/10.2967/jnumed.114.150680] [PMID: 25814519]
[66]
Hu, L.Y.; Bauer, N.; Knight, L.M.; Li, Z.; Liu, S.; Anderson, C.J.; Conti, P.S.; Sutcliffe, J.L. Characterization and evaluation of 64Cu-labeled A20FMDV2 conjugates for imaging the integrin αvβ6. Mol. Imaging Biol., 2014, 16(4), 567-577.
[http://dx.doi.org/10.1007/s11307-013-0717-9] [PMID: 24448825]
[67]
Ueda, M.; Fukushima, T.; Ogawa, K.; Kimura, H.; Ono, M.; Yamaguchi, T.; Ikehara, Y.; Saji, H. Synthesis and evaluation of a radioiodinated peptide probe targeting αvβ6 integrin for the detection of pancreatic ductal adenocarcinoma. Biochem. Biophys. Res. Commun., 2014, 445(3), 661-666.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.086] [PMID: 24583127]
[68]
Hung, K-Y.; Harris, P.W.R.; Desai, A.; Marshall, J.F.; Brimble, M.A. Structure-activity relationship study of the tumour-targeting peptide A20FMDV2 via modification of Lys16, Leu13, and N- and/or C-terminal functionality. Eur. J. Med. Chem., 2017, 136, 154-164.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.008] [PMID: 28494253]
[69]
Kraft, S.; Diefenbach, B.; Mehta, R.; Jonczyk, A.; Luckenbach, G.A.; Goodman, S.L. Definition of an unexpected ligand recognition motif for αvβ6 integrin. J. Biol. Chem., 1999, 274(4), 1979-1985.
[http://dx.doi.org/10.1074/jbc.274.4.1979] [PMID: 9890954]
[70]
Kawamata, H.; Nakashiro, K.; Uchida, D.; Harada, K.; Yoshida, H.; Sato, M. Possible contribution of active MMP2 to lymph-node metastasis and secreted cathepsin L to bone invasion of newly established human oral-squamous-cancer cell lines. Int. J. Cancer, 1997, 70(1), 120-127.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970106)70:1<120:AID-IJC18>3.0.CO;2-P] [PMID: 8985100]
[71]
Müller, M.A.; Opfer, J.; Brunie, L.; Volkhardt, L.A.; Sinner, E.K.; Boettiger, D.; Bochen, A.; Kessler, H.; Gottschalk, K.E.; Reuning, U. The glycophorin A transmembrane sequence within integrin αvβ3 creates a non-signaling integrin with low basal affinity that is strongly adhesive under force. J. Mol. Biol., 2013, 425(16), 2988-3006.
[http://dx.doi.org/10.1016/j.jmb.2013.05.020] [PMID: 23727145]
[72]
Maltsev, O.V.; Marelli, U.K.; Kapp, T.G.; Di Leva, F.S.; Di Maro, S.; Nieberler, M.; Reuning, U.; Schwaiger, M.; Novellino, E.; Marinelli, L.; Kessler, H. Stable peptides instead of stapled peptides: highly potent αvβ6-selective integrin ligands. Angew. Chem. Int. Ed. Engl., 2016, 55(4), 1535-1539.
[http://dx.doi.org/10.1002/anie.201508709] [PMID: 26663660]
[73]
Nieberler, M.; Reuning, U.; Kessler, H.; Reichart, F.; Weirich, G.; Wolff, K.D. Fluorescence imaging of invasive head and neck carcinoma cells with integrin αvβ6-targeting RGD-peptides: an approach to a fluorescence-assisted intraoperative cytological assessment of bony resection margins. Br. J. Oral Maxillofac. Surg., 2018, 56(10), 972-978.
[http://dx.doi.org/10.1016/j.bjoms.2018.11.003] [PMID: 30502043]
[74]
Notni, J.; Reich, D.; Maltsev, O.V.; Kapp, T.G.; Steiger, K.; Hoffmann, F.; Esposito, I.; Weichert, W.; Kessler, H.; Wester, H.J. In vivo PET imaging of the cancer integrin αvβ6 using 68Ga-labeled cyclic RGD nonapeptides. J. Nucl. Med., 2017, 58(4), 671-677.
[http://dx.doi.org/10.2967/jnumed.116.182824] [PMID: 27980050]
[75]
Färber, S.F.; Wurzer, A.; Reichart, F.; Beck, R.; Kessler, H.; Wester, H.J.; Notni, J. Therapeutic radiopharmaceuticals targeting integrin αvβ6. ACS Omega, 2018, 3(2), 2428-2436.
[http://dx.doi.org/10.1021/acsomega.8b00035] [PMID: 30023833]
[76]
Colgrave, M.L.; Craik, D.J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry, 2004, 43(20), 5965-5975.
[http://dx.doi.org/10.1021/bi049711q] [PMID: 15147180]
[77]
Kimura, R.H.; Levin, A.M.; Cochran, F.V.; Cochran, J.R. Engineered cystine knot peptides that bind αvβ3, αvβ5, and α5β1 integrins with low-nanomolar affinity. Proteins, 2009, 77(2), 359-369.
[http://dx.doi.org/10.1002/prot.22441] [PMID: 19452550]
[78]
Cemazar, M.; Joshi, A.; Daly, N.L.; Mark, A.E.; Craik, D.J. The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein. Structure, 2008, 16(6), 842-851.
[http://dx.doi.org/10.1016/j.str.2008.02.023] [PMID: 18547517]
[79]
Heitz, A.; Hernandez, J.F.; Gagnon, J.; Hong, T.T.; Pham, T.T.; Nguyen, T.M.; Le-Nguyen, D.; Chiche, L. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Biochemistry, 2001, 40(27), 7973-7983.
[http://dx.doi.org/10.1021/bi0106639] [PMID: 11434766]
[80]
Kimura, R.H.; Teed, R.; Hackel, B.J.; Pysz, M.A.; Chuang, C.Z.; Sathirachinda, A.; Willmann, J.K.; Gambhir, S.S. Pharmacokinetically stabilized cystine knot peptides that bind αvβ6 integrin with single-digit nanomolar affinities for detection of pancreatic cancer. Clin. Cancer Res., 2012, 18(3), 839-849.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1116] [PMID: 22173551]
[81]
Hackel, B.J.; Kimura, R.H.; Miao, Z.; Liu, H.; Sathirachinda, A.; Cheng, Z.; Chin, F.T.; Gambhir, S.S. 18F-fluorobenzoate-labeled cystine knot peptides for PET imaging of integrin αvβ6. J. Nucl. Med., 2013, 54(7), 1101-1105.
[http://dx.doi.org/10.2967/jnumed.112.110759] [PMID: 23670900]
[82]
Leung, K. 64Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-Ser-Rich cys knot scaffold grafted with integrin αvβ6-binding peptide RSLARTDLDHLRGR.Molecular Imaging and Contrast Agent Database; National Center for Biotechnology Information, 2004.
[83]
Zhu, X.; Li, J.; Hong, Y.; Kimura, R.H.; Ma, X.; Liu, H.; Qin, C.; Hu, X.; Hayes, T.R.; Benny, P.; Gambhir, S.S.; Cheng, Z. 99mTc-labeled cystine knot peptide targeting integrin αvβ6 for tumor SPECT imaging. Mol. Pharm., 2014, 11(4), 1208-1217.
[http://dx.doi.org/10.1021/mp400683q] [PMID: 24524409]
[84]
Zhang, C.; Kimura, R.; Abou-Elkacem, L.; Levi, J.; Xu, L.; Gambhir, S.S. A cystine knot peptide targeting integrin αvβ6 for photoacoustic and fluorescence imaging of tumors in living subjects. J. Nucl. Med., 2016, 57(10), 1629-1634.
[85]
Roesch, S.; Lindner, T.; Sauter, M.; Loktev, A.; Flechsig, P.; Müller, M.; Mier, W.; Warta, R.; Dyckhoff, G.; Herold-Mende, C.; Haberkorn, U.; Altmann, A. Comparison of the RGD Motif-containing αvβ6 integrin-binding peptides SFLAP3 and SFITGv6 for diagnostic application in HNSCC. J. Nucl. Med., 2018, 59(11), 1679-1685.
[http://dx.doi.org/10.2967/jnumed.118.210013] [PMID: 29674419]
[86]
Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr. Pharm. Des., 2007, 13(1), 3-16.
[http://dx.doi.org/10.2174/138161207779313768] [PMID: 17266585]
[87]
Elayadi, A.N.; Samli, K.N.; Prudkin, L.; Liu, Y.H.; Bian, A.; Xie, X.J.; Wistuba, I.I.; Roth, J.A.; McGuire, M.J.; Brown, K.C. A peptide selected by biopanning identifies the integrin αvβ6 as a prognostic biomarker for nonsmall cell lung cancer. Cancer Res., 2007, 67(12), 5889-5895.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0245] [PMID: 17575158]
[88]
Zhou, X.; Murphy, F.R.; Gehdu, N.; Zhang, J.; Iredale, J.P.; Benyon, R.C. Engagement of αvβ3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J. Biol. Chem., 2004, 279(23), 23996-24006.
[http://dx.doi.org/10.1074/jbc.M311668200] [PMID: 15044441]
[89]
Oyama, T.; Sykes, K.F.; Samli, K.N.; Minna, J.D.; Johnston, S.A.; Brown, K.C. Isolation of lung tumor specific peptides from a random peptide library: generation of diagnostic and cell-targeting reagents. Cancer Lett., 2003, 202(2), 219-230.
[http://dx.doi.org/10.1016/j.canlet.2003.08.011] [PMID: 14643452]
[90]
Liu, Z.; Liu, H.; Ma, T.; Sun, X.; Shi, J.; Jia, B.; Sun, Y.; Zhan, J.; Zhang, H.; Zhu, Z.; Wang, F. Integrin αvβ6-targeted SPECT imaging for pancreatic cancer detection. J. Nucl. Med., 2014, 55(6), 989-994.
[http://dx.doi.org/10.2967/jnumed.113.132969] [PMID: 24711651]
[91]
Liu, H.; Gao, L.; Yu, X.; Zhong, L.; Shi, J.; Jia, B.; Li, N.; Liu, Z.; Wang, F. Small-animal SPECT/CT imaging of cancer xenografts and pulmonary fibrosis using a 99mTc-labeled integrin αvβ6-targeting cyclic peptide with improved in vivo stability. Biophys. Rep., 2018, 4(5), 254-264.
[http://dx.doi.org/10.1007/s41048-018-0071-1] [PMID: 30533490]
[92]
Sorge, J.L.; Wagstaff, J.L.; Rowe, M.L.; Williamson, R.A.; Howard, M.J. Q2DSTD NMR deciphers epitope-mapping variability for peptide recognition of integrin αvβ6. Org. Biomol. Chem., 2015, 13(29), 8001-8007.
[http://dx.doi.org/10.1039/C5OB01237F] [PMID: 26119198]
[93]
Wagstaff, J.L.; Rowe, M.L.; Hsieh, S.J.; DiCara, D.; Marshall, J.F.; Williamson, R.A.; Howard, M.J. NMR relaxation and structural elucidation of peptides in the presence and absence of trifluoroethanol illuminates the critical molecular nature of integrin αvβ6 ligand specificity. RSC Advances, 2012, 2(29), 11019-11028.
[http://dx.doi.org/10.1039/c2ra21655h] [PMID: 27182435]
[94]
Gray, B.P.; Brown, K.C. Combinatorial peptide libraries: mining for cell-binding peptides. Chem. Rev., 2014, 114(2), 1020-1081.
[http://dx.doi.org/10.1021/cr400166n] [PMID: 24299061]
[95]
Aina, O.H.; Liu, R.; Sutcliffe, J.L.; Marik, J.; Pan, C.X.; Lam, K.S. From combinatorial chemistry to cancer-targeting peptides. Mol. Pharm., 2007, 4(5), 631-651.
[http://dx.doi.org/10.1021/mp700073y] [PMID: 17880166]
[96]
Gagnon, M.K.J.; Hausner, S.H.; Marik, J.; Abbey, C.K.; Marshall, J.F.; Sutcliffe, J.L. High-throughput in vivo screening of targeted molecular imaging agents. Proc. Natl. Acad. Sci. USA, 2009, 106(42), 17904-17909.
[http://dx.doi.org/10.1073/pnas.0906925106] [PMID: 19815497]
[97]
Hausner, S.H.; Kukis, D.L.; Gagnon, M.K.J.; Stanecki, C.E.; Ferdani, R.; Marshall, J.F.; Anderson, C.J.; Sutcliffe, J.L. Evaluation of [64Cu]Cu-DOTA and [64Cu]Cu-CB-TE2A chelates for targeted positron emission tomography with an alphavbeta6-specific peptide. Mol. Imaging, 2009, 8(2), 111-121.
[http://dx.doi.org/10.2310/7290.2009.00015] [PMID: 19397856]
[98]
Hausner, S.H.; Abbey, C.K.; Bold, R.J.; Gagnon, M.K.; Marik, J.; Marshall, J.F.; Stanecki, C.E.; Sutcliffe, J.L. Targeted in vivo imaging of integrin αvβ6 with an improved radiotracer and its relevance in a pancreatic tumor model. Cancer Res., 2009, 69(14), 5843-5850.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4410] [PMID: 19549907]
[99]
Tang, Y.S.C.; Davis, R.A.; Ganguly, T.; Sutcliffe, J.L. Identification, characterization, and optimization of integrin αvβ6-targeting peptides from a One-Bead One-Compound (OBOC) library: towards the development of Positron Emission Tomography (PET) imaging agents. Molecules, 2019. 2ht4t(p2:)//,d 3x0.d9o.
[http://dx.doi.org/10.3390/molecules24020309] [PMID: 30654483]
[100]
Kapp, T.G.; Rechenmacher, F.; Neubauer, S.; Maltsev, O.V.; Cavalcanti-Adam, E.A.; Zarka, R.; Reuning, U.; Notni, J.; Wester, H.J.; Mas-Moruno, C.; Spatz, J.; Geiger, B.; Kessler, H. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci. Rep., 2017, 7(1), 39805.
[http://dx.doi.org/10.1038/srep39805] [PMID: 28074920]
[101]
Dong, X.; Hudson, N.E.; Lu, C.; Springer, T.A. Structural determinants of integrin β-subunit specificity for latent TGF-β. Nat. Struct. Mol. Biol., 2014, 21(12), 1091-1096.
[http://dx.doi.org/10.1038/nsmb.2905] [PMID: 25383667]
[102]
Di Leva, F.S.; Tomassi, S.; Di Maro, S.; Reichart, F.; Notni, J.; Dangi, A.; Marelli, U.K.; Brancaccio, D.; Merlino, F.; Wester, H.J.; Novellino, E.; Kessler, H.; Marinelli, L. From a helix to a small cycle: metadynamics-inspired αvβ6 integrin selective ligands. Angew. Chem. Int. Ed. Engl., 2018, 57(44), 14645-14649.
[http://dx.doi.org/10.1002/anie.201803250] [PMID: 29660806]
[103]
Hausner, S.H.; Bold, R.J.; Cheuy, L.Y.; Chew, H.K.; Daly, M.E.; Davis, R.A.; Foster, C.C.; Kim, E.J.; Sutcliffe, J.L. Preclinical development and first-in-human imaging of the integrin αvβ6 with [18F]αvβ6 -binding peptide in metastatic carcinoma. Clin. Cancer Res., 2019, 25(4), 1206-1215.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2665] [PMID: 30401687]
[104]
Müller, M.; Altmann, A.; Sauter, M.; Lindner, T.; Jäger, D.; Rathke, H.; Herold-Mende, C.; Marmé, F.; Babich, J.; Mier, W. Preclinical evaluation of peptide-based radiotracers for integrin αvβ6-positive pancreatic carcinoma. Nucl. Med. (Stuttg.), 2019, 58(4), 309-318.
[http://dx.doi.org/10.1055/a-0894-4127]]
[105]
Altmann, A.; Sauter, M.; Roesch, S.; Mier, W.; Warta, R.; Debus, J.; Dyckhoff, G.; Herold-Mende, C.; Haberkorn, U. Identification of a novel ITGαvβ6-binding peptide using protein separation and phage display. Clin. Cancer Res., 2017, 23(15), 4170-4180.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3217] [PMID: 28468949]
[106]
Flechsig, P.; Lindner, T.; Loktev, A.; Roesch, S.; Mier, W.; Sauter, M.; Meister, M.; Herold-Mende, C.; Haberkorn, U.; Altmann, A. PET/CT imaging of NSCLC with a αvβ6 integrin-targeting peptide. Mol. Imaging Biol., 2019, 21(5), 973-983.
[http://dx.doi.org/10.1007/s11307-018-1296-6] [PMID: 30671741]
[107]
Prabhu, L.; Mundade, R.; Korc, M.; Loehrer, P.J.; Lu, T. Critical role of NF-κB in pancreatic cancer. Oncotarget, 2014, 5(22), 10969-10975.
[http://dx.doi.org/10.18632/oncotarget.2624] [PMID: 25473891]
[108]
Sheldrake, H.M.; Patterson, L.H. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J. Med. Chem., 2014, 57(15), 6301-6315.
[http://dx.doi.org/10.1021/jm5000547] [PMID: 24568695]
[109]
Cirkel, G.A.; Kerklaan, B.M.; Vanhoutte, F.; Van der Aa, A.; Lorenzon, G.; Namour, F.; Pujuguet, P.; Darquenne, S.; de Vos, F.Y.F.; Snijders, T.J.; Voest, E.E.; Schellens, J.H.; Lolkema, M.P. A dose escalating phase I study of GLPG0187, a broad spectrum integrin receptor antagonist, in adult patients with progressive high-grade glioma and other advanced solid malignancies. Invest. New Drugs, 2016, 34(2), 184-192.
[http://dx.doi.org/10.1007/s10637-015-0320-9] [PMID: 26792581]
[110]
Hutchinson, J.H.; Halczenko, W.; Brashear, K.M.; Breslin, M.J.; Coleman, P.J.; Duong, L.T.; Fernandez-Metzler, C.; Gentile, M.A.; Fisher, J.E.; Hartman, G.D.; Huff, J.R.; Kimmel, D.B.; Leu, C.T.; Meissner, R.S.; Merkle, K.; Nagy, R.; Pennypacker, B.; Perkins, J.J.; Prueksaritanont, T.; Rodan, G.A.; Varga, S.L.; Wesolowski, G.A.; Zartman, A.E.; Rodan, S.B.; Duggan, M.E. Nonpeptide αvβ3 antagonists. 8. In vitro and in vivo evaluation of a potent αvβ3 antagonist for the prevention and treatment of osteoporosis. J. Med. Chem., 2003, 46(22), 4790-4798.
[http://dx.doi.org/10.1021/jm030306r] [PMID: 14561098]
[111]
Meissner, R.S.; Perkins, J.J.; Duong, L.T.; Hartman, G.D.; Hoffman, W.F.; Huff, J.R.; Ihle, N.C.; Leu, C.T.; Nagy, R.M.; Naylor-Olsen, A.; Rodan, G.A.; Rodan, S.B.; Whitman, D.B.; Wesolowski, G.A.; Duggan, M.E. Nonpeptide αvβ3 antagonists. Part 2: constrained glycyl amides derived from the RGD tripeptide. Bioorg. Med. Chem. Lett., 2002, 12(1), 25-29.
[http://dx.doi.org/10.1016/S0960-894X(01)00687-4] [PMID: 11738566]
[112]
Coleman, P.J.; Askew, B.C.; Hutchinson, J.H.; Whitman, D.B.; Perkins, J.J.; Hartman, G.D.; Rodan, G.A.; Leu, C-T.; Prueksaritanont, T.; Fernandez-Metzler, C.; Merkle, K.M.; Lynch, R.; Lynch, J.J.; Rodan, S.B.; Duggan, M.E. Non-peptide αvβ3 antagonists. Part 4: potent and orally bioavailable chain-shortened RGD mimetics. Bioorg. Med. Chem. Lett., 2002, 12(17), 2463-2465.
[http://dx.doi.org/10.1016/S0960-894X(02)00396-7] [PMID: 12161158]
[113]
Miller, W.H.; Alberts, D.P.; Bhatnagar, P.K.; Bondinell, W.E.; Callahan, J.F.; Calvo, R.R.; Cousins, R.D.; Erhard, K.F.; Heerding, D.A.; Keenan, R.M.; Kwon, C.; Manley, P.J.; Newlander, K.A.; Ross, S.T.; Samanen, J.M.; Uzinskas, I.N.; Venslavsky, J.W.; Yuan, C.C.; Haltiwanger, R.C.; Gowen, M.; Hwang, S.M.; James, I.E.; Lark, M.W.; Rieman, D.J.; Stroup, G.B.; Azzarano, L.M.; Salyers, K.L.; Smith, B.R.; Ward, K.W.; Johanson, K.O.; Huffman, W.F. Discovery of orally active nonpeptide vitronectin receptor antagonists based on a 2-benzazepine Gly-Asp mimetic. J. Med. Chem., 2000, 43(1), 22-26.
[http://dx.doi.org/10.1021/jm990446u] [PMID: 10633035]
[114]
Adams, J.; Anderson, E.C.; Blackham, E.E.; Chiu, Y.W.; Clarke, T.; Eccles, N.; Gill, L.A.; Haye, J.J.; Haywood, H.T.; Hoenig, C.R.; Kausas, M.; Le, J.; Russell, H.L.; Smedley, C.; Tipping, W.J.; Tongue, T.; Wood, C.C.; Yeung, J.; Rowedder, J.E.; Fray, M.J.; McInally, T.; Macdonald, S.J. Structure activity relationships of αv integrin antagonists for pulmonary fibrosis by variation in aryl substituents. ACS Med. Chem. Lett., 2014, 5(11), 1207-1212.
[http://dx.doi.org/10.1021/ml5002079] [PMID: 25408832]
[115]
Procopiou, P.A.; Anderson, N.A.; Barrett, J.; Barrett, T.N.; Crawford, M.H.J.; Fallon, B.J.; Hancock, A.P.; Le, J.; Lemma, S.; Marshall, R.P.; Morrell, J.; Pritchard, J.M.; Rowedder, J.E.; Saklatvala, P.; Slack, R.J.; Sollis, S.L.; Suckling, C.J.; Thorp, L.R.; Vitulli, G.; Macdonald, S.J.F. Discovery of (S)-3-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid, a nonpeptidic αvβ6 integrin inhibitor for the inhaled treatment of idiopathic pulmonary fibrosis. J. Med. Chem., 2018, 61(18), 8417-8443.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00959] [PMID: 30215258]
[116]
Hall, E.R.; Bibby, L.I.; Slack, R.J. Characterisation of a novel, high affinity and selective αvβ6 integrin RGD-mimetic radioligand. Biochem. Pharmacol., 2016, 117, 88-96.
[http://dx.doi.org/10.1016/j.bcp.2016.08.003] [PMID: 27501918]
[117]
Anderson, N.A.; Campbell, I.B.; Fallon, B.J.; Lynn, S.M.; Macdonald, S.J.F.; Pritchard, J.M.; Procopiou, P.A.; Sollis, S.L.; Thorp, L.R. Synthesis and determination of absolute configuration of a non-peptidic αvβ6 integrin antagonist for the treatment of idiopathic pulmonary fibrosis. Org. Biomol. Chem., 2016, 14(25), 5992-6009.
[http://dx.doi.org/10.1039/C6OB00496B] [PMID: 27226381]
[118]
Goodman, S.L.; Hölzemann, G.; Sulyok, G.A.G.; Kessler, H. Nanomolar small molecule inhibitors for alphav(β)6, alphav(β)5, and alphav(β)3 integrins. J. Med. Chem., 2002, 45(5), 1045-1051.
[http://dx.doi.org/10.1021/jm0102598] [PMID: 11855984]
[119]
Van Aarsen, L.A.K.; Leone, D.R.; Ho, S.; Dolinski, B.M.; McCoon, P.E.; LePage, D.J.; Kelly, R.; Heaney, G.; Rayhorn, P.; Reid, C.; Simon, K.J.; Horan, G.S.; Tao, N.; Gardner, H.A.; Skelly, M.M.; Gown, A.M.; Thomas, G.J.; Weinreb, P.H.; Fawell, S.E.; Violette, S.M. Antibody-mediated blockade of integrin alpha v beta 6 inhibits tumor progression in vivo by a transforming growth factor-beta-regulated mechanism. Cancer Res., 2008, 68(2), 561-570.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2307] [PMID: 18199553]
[120]
Holliger, P.; Prospero, T.; Winter, G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6444-6448.
[http://dx.doi.org/10.1073/pnas.90.14.6444] [PMID: 8341653]
[121]
Lawrence, L.J.; Kortt, A.A.; Iliades, P.; Tulloch, P.A.; Hudson, P.J. Orientation of antigen binding sites in dimeric and trimeric single chain Fv antibody fragments. FEBS Lett., 1998, 425(3), 479-484.
[http://dx.doi.org/10.1016/S0014-5793(98)00292-0] [PMID: 9563517]
[122]
Hudson, P.J.; Kortt, A.A. High avidity scFv multimers; diabodies and triabodies. J. Immunol. Methods, 1999, 231(1-2), 177-189.
[http://dx.doi.org/10.1016/S0022-1759(99)00157-X] [PMID: 10648937]
[123]
Olafsen, T.; Betting, D.; Kenanova, V.E.; Salazar, F.B.; Clarke, P.; Said, J.; Raubitschek, A.A.; Timmerman, J.M.; Wu, A.M. Recombinant anti-CD20 antibody fragments for small-animal PET imaging of B-cell lymphomas. J. Nucl. Med., 2009, 50(9), 1500-1508.
[http://dx.doi.org/10.2967/jnumed.108.060426] [PMID: 19690034]
[124]
Wu, A.M.; Chen, W.; Raubitschek, A.; Williams, L.E.; Neumaier, M.; Fischer, R.; Hu, S.Z.; Odom-Maryon, T.; Wong, J.Y.; Shively, J.E. Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology, 1996, 2(1), 21-36.
[http://dx.doi.org/10.1016/1380-2933(95)00027-5] [PMID: 9373325]
[125]
Kogelberg, H.; Miranda, E.; Burnet, J.; Ellison, D.; Tolner, B.; Foster, J.; Picón, C.; Thomas, G.J.; Meyer, T.; Marshall, J.F.; Mather, S.J.; Chester, K. Generation and characterization of a diabody targeting the αvβ6 integrin. PLoS One, 2013, 8(9)e73260
[http://dx.doi.org/10.1371/journal.pone.0073260] [PMID: 24023846]
[126]
Weinreb, P.H.; Simon, K.J.; Rayhorn, P.; Yang, W.J.; Leone, D.R.; Dolinski, B.M.; Pearse, B.R.; Yokota, Y.; Kawakatsu, H.; Atakilit, A.; Sheppard, D.; Violette, S.M. Function-blocking integrin alphavbeta6 monoclonal antibodies: distinct ligand-mimetic and nonligand-mimetic classes. J. Biol. Chem., 2004, 279(17), 17875-17887.
[http://dx.doi.org/10.1074/jbc.M312103200] [PMID: 14960589]
[127]
White, J.B.; Boucher, D.L.; Zettlitz, K.A.; Wu, A.M.; Sutcliffe, J.L. Development and characterization of an αvβ6-specific diabody and a disulfide-stabilized αvβ6-specific cys-diabody. Nucl. Med. Biol., 2015, 42(12), 945-957.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.07.014] [PMID: 26341848]
[128]
White, J.B.; Hu, L.Y.; Boucher, D.L.; Sutcliffe, J.L. ImmunoPET Imaging of αvβ6 Expression Using an Engineered Anti-αvβ6 Cys-diabody Site-Specifically Radiolabeled with Cu-64: Considerations for Optimal Imaging with Antibody Fragments. Mol. Imaging Biol., 2018, 20(1), 103-113.
[http://dx.doi.org/10.1007/s11307-017-1097-3] [PMID: 28653240]
[129]
Zhang, C.; Kimura, R.; Abou-Elkacem, L.; Levi, J.; Xu, L.; Gambhir, S.S. A Cystine Knot Peptide Targeting Integrin αvβ6 for Photoacoustic and Fluorescence Imaging of Tumors in Living Subjects. J. Nucl. Med., 2016, 57(10), 1629-1634.
[http://dx.doi.org/10.2967/jnumed.115.169383] [PMID: 27230926]
[130]
Bradbury, A.R.M.; Marks, J.D. Antibodies from phage antibody libraries. J. Immunol. Methods, 2004, 290(1-2), 29-49.
[http://dx.doi.org/10.1016/j.jim.2004.04.007] [PMID: 15261570]
[131]
Babcook, J.S.; Leslie, K.B.; Olsen, O.A.; Salmon, R.A.; Schrader, J.W. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc. Natl. Acad. Sci. USA, 1996, 93(15), 7843-7848.
[http://dx.doi.org/10.1073/pnas.93.15.7843] [PMID: 8755564]
[132]
Eberlein, C.; Kendrew, J.; McDaid, K.; Alfred, A.; Kang, J.S.; Jacobs, V.N.; Ross, S.J.; Rooney, C.; Smith, N.R.; Rinkenberger, J.; Cao, A.; Churchman, A.; Marshall, J.F.; Weir, H.M.; Bedian, V.; Blakey, D.C.; Foltz, I.N.; Barry, S.T. A human monoclonal antibody 264RAD targeting αvβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene, 2013, 32(37), 4406-4416.
[http://dx.doi.org/10.1038/onc.2012.460] [PMID: 23108397]
[133]
Read, D.A.; Chester, K.A.; Keep, P.A.; Begent, R.H. Mutagenesis of single-chain antibody MFE 23 and its effect on affinity for CEA. Br. J. Cancer, 1995, 71(57), 132.
[134]
Kogelberg, H.; Tolner, B.; Thomas, G.J.; Di Cara, D.; Minogue, S.; Ramesh, B.; Sodha, S.; Marsh, D.; Lowdell, M.W.; Meyer, T.; Begent, R.H.; Hart, I.; Marshall, J.F.; Chester, K. Engineering a single-chain Fv antibody to alpha v β 6 integrin using the specificity-determining loop of a foot-and-mouth disease virus. J. Mol. Biol., 2008, 382(2), 385-401.
[http://dx.doi.org/10.1016/j.jmb.2008.07.013] [PMID: 18656482]
[135]
Zhao-Yang, Z.; Ke-Sen, X.; Qing-Si, H.; Wei-Bo, N.; Jia-Yong, W.; Yue-Tang, M.; Jin-Shen, W.; Guo-Qiang, W.; Guang-Yun, Y.; Jun, N. Signaling and regulatory mechanisms of integrin alphavbeta6 on the apoptosis of colon cancer cells. Cancer Lett., 2008, 266(2), 209-215.
[http://dx.doi.org/10.1016/j.canlet.2008.02.054] [PMID: 18381232]
[136]
Van Aarsen, L.A.; Leone, D.R.; Ho, S.; Dolinski, B.M.; McCoon, P.E.; LePage, D.J.; Kelly, R.; Heaney, G.; Rayhorn, P.; Reid, C.; Simon, K.J.; Horan, G.S.; Tao, N.; Gardner, H.A.; Skelly, M.M.; Gown, A.M.; Thomas, G.J.; Weinreb, P.H.; Fawell, S.E.; Violette, S.M. Antibody-mediated blockade of integrin αvβ6 inhibits tumor progression in vivo by a transforming growth factor-β-regulated mechanism. Cancer Res., 2008, 68(2), 561-570.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2307] [PMID: 18199553]
[137]
Legge, C.J.; Colley, H.E.; Lawson, M.A.; Rawlings, A.E. Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. J. Oral Pathol. Med., 2019, 48(9), 803-809.
[http://dx.doi.org/10.1111/jop.12921] [PMID: 31309616]
[138]
Uusi-Kerttula, H.; Davies, J.; Coughlan, L.; Hulin-Curtis, S.; Jones, R.; Hanna, L.; Chester, J.D.; Parker, A.L. Pseudotyped αvβ6 integrin-targeted adenovirus vectors for ovarian cancer therapies. Oncotarget, 2016, 7(19), 27926-27937.
[http://dx.doi.org/10.18632/oncotarget.8545] [PMID: 27056886]
[139]
Uusi-Kerttula, H.; Davies, J.A.; Thompson, J.M.; Wongthida, P.; Evgin, L.; Shim, K.G.; Bradshaw, A.; Baker, A.T.; Rizkallah, P.J.; Jones, R.; Hanna, L.; Hudson, E.; Vile, R.G.; Chester, J.D.; Parker, A.L. Ad5NULL-A20: a tropism-modified, αvβ6 integrin-selective oncolytic adenovirus for epithelial ovarian cancer therapies. Clin. Cancer Res., 2018, 24(17), 4215-4224.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1089] [PMID: 29798908]
[140]
Man, Y.K.S.; Davies, J.A.; Coughlan, L.; Pantelidou, C.; Blázquez-Moreno, A.; Marshall, J.F.; Parker, A.L.; Halldén, G. The novel oncolytic adenoviral mutant Ad5-3Δ-A20T retargeted to αvβ6 integrins efficiently eliminates pancreatic cancer cells. Mol. Cancer Ther., 2018, 17(2), 575-587.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0671] [PMID: 29367266]
[141]
Yuan, A.; Wu, J.; Tang, X.; Zhao, L.; Xu, F.; Hu, Y. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci., 2013, 102(1), 6-28.
[http://dx.doi.org/10.1002/jps.23356] [PMID: 23132644]
[142]
Gao, L.; Zhang, C.; Gao, D.; Liu, H.; Yu, X.; Lai, J.; Wang, F.; Lin, J.; Liu, Z. Enhanced anti-tumor efficacy through a combination of integrin αvβ6-targeted photodynamic therapy and immune checkpoint inhibition. Theranostics, 2016, 6(5), 627-637.
[http://dx.doi.org/10.7150/thno.14792] [PMID: 27022411]
[143]
Whilding, L.M.; Parente-Pereira, A.C.; Zabinski, T.; Davies, D.M.; Petrovic, R.M.G.; Kao, Y.V.; Saxena, S.A.; Romain, A.; Costa-Guerra, J.A.; Violette, S.; Itamochi, H.; Ghaem-Maghami, S.; Vallath, S.; Marshall, J.F.; Maher, J. Targeting of aberrant αvβ6 integrin expression in solid tumors using chimeric antigen receptor-engineered T cells. Mol. Ther., 2017, 25(1), 259-273.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.012] [PMID: 28129120]
[144]
Whilding, L.M.; Halim, L.; Draper, B.; Parente-Pereira, A.C.; Zabinski, T.; Davies, D.M.; Maher, J. CAR T-Cells targeting the integrin αvβ6 and co-expressing the chemokine receptor CXCR2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers (Basel), 2019, 11(5), 674.
[http://dx.doi.org/10.3390/cancers11050674] [PMID: 31091832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy