Skip to main content
Log in

Analogies between Physics and Information Processing

  • GENERAL SECTION
  • Published:
Automatic Documentation and Mathematical Linguistics Aims and scope

Abstract

The similarities of empirical dependences in a language and theoretical physical laws are considered. The issue of using quantum-mechanical models for describing textual documents semantic component is analyzed. Possible analogies between linguistic and physical objects are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the only “machine” known today that implements the transformation (interaction) of abstract objects into real ones is a person.

  2. Fundamental particles with a half-integer spin that do not participate in strong interactions.

  3. An observable in quantum mechanics is a quantity whose values are measured in an experiment.

  4. Hereinafter, definitions for physical quantities are given from the Physical Encyclopedia edited by M. Prokhorov. Moscow: Sovetskaya entsiklopediya, 1988.

  5. In classical physics, this is fundamentally unacceptable. In quantum mechanics, it is theoretically permissible, but it is associated with multiple (variant) assigning of a changing wave function.

  6. According to D. Hilbert, “The strict formalization of a theory implies a complete abstraction from meaning.” Due to being fuzzy, a natural language has an almost unlimited number of degrees of freedom, but, determining some meaning, we thereby build the description of a system that is to a varying extent formal, can be transformed and analyzed, including by the methods of mathematics.

REFERENCES

  1. Povetkina, Yu.V., Modeling as a method of linguistic research, Filol. Nauki, Vopr. Teor. Prakt., 2012, no. 6, pp. 132–136.

  2. Mineev, A.B., Some plasma–biology analogies, Comput. Nanotechnol., 2018, no. 1, pp. 91–107.

  3. Chernavskii, D.S., Starkov, N.I., Malkov, S.Yu., Kosse, Yu.V., and Shcherbakov, A.V., On econophysics and its place in modern theoretical economics, Phys.-Usp., 2011, vol. 54, no. 7, pp. 767–773.

    Article  Google Scholar 

  4. Slovokhotov, Yu.L., Physics and sociophysics. Part 3. Quasi-physical modeling in sociology and political science. Some models of linguistics, demography, and mathematical history, Probl. Upr., 2012, no. 3, pp. 2–34.

  5. Dlyasin, G.G., Azbuka Germesa Trismegista ili molekulyarnaya tainopis' myshleniya (The ABC of Hermes Trismegistus or the Molecular Cryptography of Thinking), Moscow: Belye Al’vy, 1998.

  6. Lebedev, A.N., Patterns of repetition of words in speech, Psikhol. Zh., 1983, vol. 4, no. 5, pp. 11–23.

    Google Scholar 

  7. Lau, E.F., Phillips, C., and Poeppel, D., A cortical network for semantics: (De)constructing the N400, Nat. Rev., Neurosci., 2008, vol. 9, no. 12, pp. 920–933.

    Article  Google Scholar 

  8. Gurevich, I.M., Zakony informatiki - osnova stroeniya i poznaniya slozhnykh sistem (The Laws of Computer Science as the Basis for the Structure and Cognition of Complex Systems), Moscow: TORUS PRESS, 2007.

  9. Landauer, R., The physical nature of information, Phys. Lett. A, 1996, vol. 217, pp. 188–193.

    Article  MathSciNet  Google Scholar 

  10. Weinberg, S., Unified theories of elementary-particle interaction, Sci. Am., 1974, vol. 231, no. 1, pp. 50–59.

    Article  Google Scholar 

  11. Ivanov, M.G., Kak ponimat' kvantovuyu mekhaniku (How to Understand Quantum Mechanics), Moscow–Izhevsk: Regul. Khaoticheskaya Din., 2015.

  12. Elkina, V.M. and Yudina, L.S., Statistics of syllables in Russian speech, Vychisl. Sist., 1964, no. 10, pp. 58–78.

  13. Merkulova, I.A., Quantitative characteristics of Russian vocabulary against a general Slavic background, Vestn. Volgogr. Gos. Univ., Ser.: Lingvist. Mezhkul’t. Kommun., 2014, no. 3, pp. 100–107.

  14. Poddubnyi, V.V. and Polikarpov, A.A., A dissipative stochastic dynamic model of the development of linguistic signs, Komp’yut. Issled. Model., 2011, vol. 3, no. 2, pp. 103–124.

    Google Scholar 

  15. Shreider, Yu.A., On the possibility of theoretical derivation of statistical regularities of the text (to the justification of Zipf’s Law), Probl. Peredachi Inf., 1967, vol. 3, no. 1, pp. 57–63.

    Google Scholar 

  16. Miyazima, S. and Yamamoto, K., Measuring the temperature of texts, Fractals, 2008, vol. 16, no. 1, pp. 25–32.

    Article  MathSciNet  Google Scholar 

  17. Seleznev, G.D., The nature of the exponential distribution of words by the number of meanings, Vestn. Volgogr. Gos. Univ., Ser.: Lingvist. Mezhkul’t. Kommun., 2007, no. 2, pp. 42–45.

  18. Leopold, E., Frequency spectra within word length classes, J. Quant. Linguist., 1988, vol. 5, no. 3, pp. 224–231.

    Article  Google Scholar 

  19. Keler, R., Synergetic linguistics: Structure and dynamics of vocabulary. http://ubt.opus.hbz-nrw.de/volltexte/ 2007/413/pdf/synling.pdf. Accessed June 12, 2020.

  20. Ji, S., Waves as the symmetry principle underlying cosmic, cell, and human languages, Information, 2017, vol. 8, pp. 1–25.

    Article  Google Scholar 

  21. Maslov, V.P., Bose gas of anharmonic oscillators and refinement of the Zipf law, Theor. Math. Phys., 2006, vol. 148, pp. 1295–1296.

    Article  MathSciNet  Google Scholar 

  22. Maslov, V.P., The relationship between the Fermi–Dirac distribution and statistical distributions in languages, Math. Notes, 2017, vol. 101, pp. 645–659.

    Article  MathSciNet  Google Scholar 

  23. Lebedev, A.A., Maksimov, N.V., and Smirnova, E.V., Semantic shifts of terms: Analysis of relationships and a quantum-mechanical model, Autom. Doc. Math. Linguist., 2016, vol. 50, pp. 26–34.

    Article  Google Scholar 

  24. Salton, G., Wong, A., and Yang, C., A vector space model for automatic indexing, Commun. ACM, 1975, vol. 18, no. 11, pp. 613–620.

    Article  Google Scholar 

  25. Ursul, A.D., Priroda informatsii: Filosofskii ocherk (The Nature of Information: A Philosophical Sketch), Chelyabinsk: Chelyab. Gos. Akad. Kul’t. Iskusstv, 2010.

  26. Berg, A.I. and Spirkin, A.G., Cybernetics and dialectical materialistic philosophy, in Problemy filosofii i metodologii sovremennogo estestvoznaniya (Problems of Philosophy and Methodology of Modern Natural Science), Moscow: Nauka, 1973, pp. 139–146.

  27. Schaden, M., Quantum finance, Phys. A: Stat. Mech. Its Appl., 2002, vol. 316, pp. 511–538.

    Article  MathSciNet  Google Scholar 

  28. Nalimov, V.V., Spontannost’ soznaniya. Veroyatnostnaya teoriya smyslov i smyslovaya arkhitektonika lichnosti? (Spontaneity of Consciousness. Probabilistic Theory of Senses and Semantic Architectonics of Personality), Moscow: Prometei, 1989.

  29. Landau, L.D. and Lifshits, E.M., Course of Theoretical Physics, vol. 3: Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, 1958.

  30. van Rijsbergen, C., The Geometry of Information Retrieval, Cambridge: Cambridge Univ. Press, 2004.

    Book  Google Scholar 

  31. Muranivskii, T.V., Metody obrabotki dokumentov na osnove ispol’zovaniya svoistv i zakonomernostei informatsii: Ucheb. posobie (Document Processing Methods Based on the Use of Properties and Patterns of Information: Handbook), Moscow: MGIAI, 1984.

  32. Kitto, K., Ramm, B., Sitbon, L., and Bruza, P., Quantum theory beyond the physical: Information in context, Axiomathes, 2011, vol. 21, no. 2, pp. 331–345.

    Article  Google Scholar 

  33. Popov, I.I., Romanenko, A.G., and Sumarokov, L.N., Set-theoretical modeling of scientific and technical information systems, Vopr. Inf. Teor. Prakt., 1978, nos. 33–34, pp. 16–63.

  34. Balkır, E., Using density matrices in a compositional distributional model of meaning, Master’s Thesis, Univ. Oxford, 2014. http://www.cs.ox.ac.uk/people/bob.coecke/Esma.pdf. Accessed June 12, 2020.

  35. Maksimov, N.V., Information and knowledge: Nature and the conceptual model, Autom. Doc. Math. Linguist., 2010, vol. 44, pp. 177–186.

    Article  Google Scholar 

  36. Aerts, D., Gabora, L., and Sozzo, S., Concepts and their dynamics: A quantum-theoretic modeling of human thought, Top. Cognit. Sci., 2013, vol. 5, no. 4, pp. 737–772.

    Article  Google Scholar 

  37. Zurek, W.H., Quantum Darwinism, Nat. Phys., 2009, vol. 5, no. 3, pp. 181–188.

    Article  Google Scholar 

  38. Zurek, W.H., Decoherence and the transition from quantum to classica – revisited, Los Alamos Sci., 2002, no. 27, pp. 86–109.

  39. Li, Y. and Cunningham, H., Geometric and quantum methods for information retrieval, ACM SIGIR Forum, 2008, vol. 42, no. 2, pp. 22–32.

  40. Krylov, J.K., Synergetic models and methods in quantitative linguistics, J. Quant. Linguist., 2002, vol. 9, no. 2, pp. 125–185.

    Article  Google Scholar 

  41. Wittek, P. and Darányi, S., Spectral composition of semantic spaces, Proc. of 5th International Quantum Interaction Symposium (QI, June 26–29, 2011, Aberdeen, UK), Berlin, 2011, pp. 60–70.

  42. Sordoni, A., He, J., and Nie, J., Modeling latent topic interactions using quantum interference for information retrieval, Proc. of the 22nd ACM International Conference on Information & Knowledge Management (CIKM'13, October 27 – November 1, 2013, San Francisco, USA), New York, 2013, pp. 1197–1200.

  43. Zhang, P., Song, D., Zhao, X., and Hou, Y., Investigating query-drift problem from a novel perspective of photon polarization, Proc. of the 3rd International Conference on the Theory of Information Retrieval (ICTIR, September 12–14, 2012, Bertinoro), Berlin, 2011, pp. 332–336.

  44. Bruza, P., Kitto, K., Nelson, D., and McEvoy, C., Is there something quantum-like about the human mental lexicon?, J. Math. Psychol., 2009, vol. 53, no. 5, pp. 363–377.

    MathSciNet  MATH  Google Scholar 

  45. Melucci, M. and van Rijsbergen, K., Quantum mechanics and information retrieval, in Advanced Topics in Information Retrieval, Berlin: Springer, 2011, pp. 125–155.

    Book  Google Scholar 

Download references

FUNDING

This study was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation (state assignment project no. 0723-2020-0036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Lebedev or N. V. Maksimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Solovyova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.A., Maksimov, N.V. Analogies between Physics and Information Processing. Autom. Doc. Math. Linguist. 54, 233–242 (2020). https://doi.org/10.3103/S0005105520050076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0005105520050076

Keywords:

Navigation