Skip to main content
Log in

Mechanisms of Stress Generation in Thin Films and Coatings

  • REVIEWS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Analysis of the literature data on the reasons for the development of mechanical stresses in epitaxial, polycrystalline, and amorphous films during their formation and under various external influences is carried out. The mechanism of the appearance of internal stresses during heteroepitaxial growth of films caused by the mismatch of the crystal lattice constants of the film and substrate is described. The relationship between the development of mismatch stresses in heteroepitaxial films and changes in the nature of their growth is shown. Models of the occurrence of compressive and tensile stresses in polycrystalline films due to the formation and coalescence of islands at the initial stage of their growth are considered. The regularities of the evolution of internal stresses in continuous films are discussed depending on the conditions of their deposition, as well as their chemical composition, structure, and mechanical properties. The mechanisms of development of internal stresses in thin films associated with the formation of point defects in them, the incorporation of impurities, and phase transformations occurring in the deposition process are reviewed. External factors that lead to the appearance of stresses in thin films during their storage and operation are considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. A. C. Haanappel, H. D. van Corbach, T. Fransen, and P. G. Gellings, Mater. Sci. Eng., A 167, 179 (1993). https://doi.org/10.1016/0921-5093(93)90352-F

    Article  Google Scholar 

  2. B. E. Alaca, M. T. A. Saif, and H. Sehitoglu, Acta Mater. 50, 1197 (2002). https://doi.org/10.1016/S1359-6454(01)00421-9

    Article  ADS  Google Scholar 

  3. P. J. J. Forschelen, A. S. J. Suiker, and O. van der Sluis, Int. J. Solids Struct. 9798, 284 (2016). https://doi.org/10.1016/j.ijsolstr.2016.07.020

  4. K. Khaledi, T. Brepols, and S. Reese, Mech. Mater. 137, 103142 (2019). https://doi.org/10.1016/j.mechmat.2019.103142

    Article  Google Scholar 

  5. R. Stylianoua, D. Velic, W. Daves, W. Ecker, A. Stark, N. Schell, M. Tkadletz, N. Schalk, C. Czettl, and C.  Mitterer, Int. J. Refract. Met. Hard Mater. 86, 105102 (2020). https://doi.org/10.1016/j.ijrmhm.2019.105102

    Article  Google Scholar 

  6. D. S. Balint and J. W. Hutchinson, J. Appl. Mech. 68, 725 (2001). https://doi.org/10.1115/1.1388012

    Article  ADS  Google Scholar 

  7. L. Lagunegrand, T. Lorriot, R. Harry, H. Wargnier, and J. M. Quenisset, Compos. Sci. Technol. 66, 1315 (2006). https://doi.org/10.1016/j.compscitech.2005.10.010

    Article  Google Scholar 

  8. J. W. Hutchinson, M. Y. He, and A. G. Evans, J. Mech. Phys. Solids 48, 709 (2000). https://doi.org/10.1016/S0022-5096(99)00050-2

    Article  ADS  Google Scholar 

  9. A. R. Shugurov and A. V. Panin, Phys. Mesomech. 13 (1–2), 9 (2010). https://doi.org/10.1016/j.physme.2010.03.010

  10. C. Malerba, M. Valentini, R. C. L. Azanza, A. Rinaldi, and A. Mittiga, Mater. Des. 108, 725 (2016). https://doi.org/10.1016/j.matdes.2016.07.019

    Article  Google Scholar 

  11. D. G. Liu, L. Zheng, J. Q. Liu, L. M. Luo, and Y. C. Wu, Ceram. Int. 44, 3644 (2018). https://doi.org/10.1016/j.ceramint.2017.11.115

    Article  Google Scholar 

  12. S. J. Li, K. Wu, H. Z. Yuan, J. Y. Zhang, G. Liu, and J. Sun, Surf. Coat. Technol. 362, 35 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.088

    Article  Google Scholar 

  13. R. Delmelle, S. Michotte, M. Sinnaeve, and J. Proost, Acta Mater. 61, 2320 (2013). https://doi.org/10.1016/j.actamat.2013.01.003

    Article  ADS  Google Scholar 

  14. X. Wang and J. J. Vlassak, Mech. Mater. 88, 50 (2015). https://doi.org/10.1016/j.mechmat.2015.05.001

    Article  Google Scholar 

  15. H. Wang, W. Wang, W. Yang, Y. Zhu, Z. Lin, and G. Li, Appl. Surf. Sci. 369, 414 (2016). https://doi.org/10.1016/j.apsusc.2016.02.044

    Article  ADS  Google Scholar 

  16. S. N. Hsiao, F. T. Yuan, S. K. Chen, A. C. Sun, S. H. Su, and K. F. Chiu, J. Magn. Magn. Mater. 398, 275 (2016). https://doi.org/10.1016/j.jmmm.2015.09.034

    Article  ADS  Google Scholar 

  17. M. S. Sungurov and V. A. Finkel, Tech. Phys. 63 (8), 1182 (2018). https://doi.org/10.1134/S1063784218080200

    Article  Google Scholar 

  18. V. M. Prokhorov, E. V. Gladkikh, L. A. Ivanov, V. V. Aksenenkov, and A. N. Kirichenko, Tech. Phys. 64 (5), 654 (2019). https://doi.org/10.1134/S1063784219050190

    Article  Google Scholar 

  19. Z. S. Ma, Y. C. Zhou, S. G. Long, and C. Lu, Surf. Coat. Technol. 207, 305 (2012). https://doi.org/10.1016/j.surfcoat.2012.07.002

    Article  Google Scholar 

  20. X. Zhang, M. Watanabe, and S. Kuroda, Eng. Fract. Mech. 110, 314 (2013). https://doi.org/10.1016/j.engfracmech.2013.08.016

    Article  Google Scholar 

  21. G.-A. Cheng, D.-Y. Han, C.-L. Liang, X.-L. Wu, and R.-T. Zheng, Surf. Coat. Technol. 228, s328 (2013). https://doi.org/10.1016/j.surfcoat.2012.05.108

    Article  Google Scholar 

  22. O. P. Oladijo, A. M. Venter, and L. A. Cornish, Int. J. Refract. Met. Hard Mater. 44, 68 (2014). https://doi.org/10.1016/j.ijrmhm.2014.01.009

    Article  Google Scholar 

  23. B. Vierneusel, L. Benker, S. Tremmel, M. Göken, and B. Merle, Thin Solid Films 638, 159 (2017). https://doi.org/10.1016/j.tsf.2017.06.016

    Article  ADS  Google Scholar 

  24. T. Poirié,  T. Schmitt,  E. Bousser,  L. Martinu,  and J.-E. Klemberg-Sapieha, Tribol. Int. 109, 355 (2017). https://doi.org/10.1016/j.triboint.2016.12.053

    Article  Google Scholar 

  25. Y. Xi, Y. Bai, K. Gao, X. Pang, H. Yang, L. Yan, and A. A. Volinsky, Ceram. Int. 44, 15851 (2018). https://doi.org/10.1016/j.ceramint.2018.05.266

    Article  Google Scholar 

  26. M. S. Bae, C. Park, D. Shin, S. M. Lee, and I. Yun, Solid-State Electron. 133, 1 (2017). https://doi.org/10.1016/j.sse.2017.04.003

    Article  ADS  Google Scholar 

  27. M. H. Hong, D. I. Shim, H. H. Cho, and H. H. Park, Appl. Surf. Sci. 446, 160 (2018). https://doi.org/10.1016/j.apsusc.2018.01.283

    Article  ADS  Google Scholar 

  28. T. Wang, B. Wang, A. Haque, M. Snure, E. Heller, and N. Glavin, Microelectron. Reliab. 81, 181 (2018). https://doi.org/10.1016/j.microrel.2017.12.033

    Article  Google Scholar 

  29. Yu. A. Boikov, I. T. Serenkov, V. I. Sakharov, and V. A. Danilov, Phys. Solid State 60 (1), 173 (2018). https://doi.org/10.1134/S1063783418010067

    Article  ADS  Google Scholar 

  30. K. Sun, Q. Li, H. Guo, Y. Yang, and L. Li, J. Alloys Compd. 663, 645 (2016). https://doi.org/10.1016/j.jallcom.2015.12.193

    Article  Google Scholar 

  31. Q. Liu, W. Zhou, J. Ding, M. Xiao, Z. J. Yu, H. Xu, W. G. Mao, Y. M. Pei, F. X. Li, X. Feng, and D. N. Fang, J. Magn. Magn. Mater. 423, 90 (2017). https://doi.org/10.1016/j.jmmm.2016.09.07

    Article  ADS  Google Scholar 

  32. Y. Tan, K. Liang, Z. Mei, P. Zhou, Y. Liu, Y. Qi, Z. Ma, and T. Zhang, Ceram. Int. 44, 5564 (2018). https://doi.org/10.1016/j.ceramint.2017.12.200

    Article  Google Scholar 

  33. K. Kumar, P. Arun, C. R. Kant, N. C. Mehra, L. Makinistian, and E. A. Albanesi, J. Phys. Chem. Solids 71, 163 (2010). https://doi.org/10.1016/j.jpcs.2009.10.013

    Article  ADS  Google Scholar 

  34. B. Sarma and B. K. Sarma, J. Alloys Compd. 734, 210 (2018). https://doi.org/10.1016/j.jallcom.2017.11.028

    Article  Google Scholar 

  35. M. L. Savchenko, N. N. Vasil’ev, A. S. Yaroshevich, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretskii, Phys. Solid State 60 (4), 778 (2018). https://doi.org/10.1134/S1063783418040285

    Article  ADS  Google Scholar 

  36. W. Li, P. Li, H. Zeng, and Z. Yue, and J. Zhai, Mater. Lett. 162, 135 (2016). https://doi.org/10.1016/j.matlet.2015.09.137

    Article  Google Scholar 

  37. Y. Wang, K. Y. Li, F. Scenini, J. Jiao, S. J. Qu, Q. Luo, and J. Shen, Surf. Coat. Technol. 302, 27 (2016). https://doi.org/10.1016/j.surfcoat.2016.05.034

    Article  Google Scholar 

  38. S. Saha, M. Tomar, and V. Gupta, Enzyme Microb. Technol. 7980, 63 (2015). https://doi.org/10.1016/j.enzmictec.2015.07.008

  39. L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge Univ. Press, Cambridge, 2003).

    MATH  Google Scholar 

  40. A. Fluri, D. Pergolesi, A. Wokaun, and T. Lippert, Phys. Rev. B 97, 125412 (2018). https://doi.org/10.1103/PhysRevB.97.125412

    Article  ADS  Google Scholar 

  41. S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 113, 024909 (2013). https://doi.org/10.1063/1.4773343

    Article  ADS  Google Scholar 

  42. F. S. Frank and J. H. van der Merwe, Proc. R. Soc. London, Ser. A 198, 205 (1949). https://doi.org/10.1098/rspa.1949.0095

    Article  ADS  Google Scholar 

  43. F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London, Ser. A 198, 216 (1949). https://doi.org/10.1098/rspa.1949.0096

    Article  ADS  Google Scholar 

  44. V. A. Shchukin, A. I. Borovkov, N. N. Ledentsov, and P. S. Kop’ev, Phys. Rev. B 51, 17767 (1995). https://doi.org/10.1103/PhysRevB.51.17767

    Article  ADS  Google Scholar 

  45. O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, Semiconductors 34, 1229 (2000). https://doi.org/10.1134/1.1325416

    Article  ADS  Google Scholar 

  46. Yu. B. Bolkhovityanov, O. P. Pchelyakov, and S. I. Chikichev, Phys.-Usp. 44, 655 (2001). https://doi.org/10.1070/PU2001v044n07ABEH000879

    Article  Google Scholar 

  47. M. Yu. Gutkin and A. M. Smirnov, Phys. Solid State 58, 1611 (2016). https://doi.org/10.1134/S1063783416080138

    Article  ADS  Google Scholar 

  48. H. V. Thang, S. Tosoni, and G. Pacchioni, Appl. Surf. Sci. 483, 133 (2019). https://doi.org/10.1016/j.apsusc.2019.03.240

    Article  ADS  Google Scholar 

  49. M.-J. Casanove, A. Alimoussa, M. Schwerdtfeger, S. Gaubert, H. Moriceau, and J.-C. Villegier, Mater. Sci. Eng., B 33, 162 (1995). https://doi.org/10.1016/0921-5107(94)01182-6

    Article  Google Scholar 

  50. Y. Obayashi and K. Shintani, J. Appl. Phys. 84, 3141 (1998). https://doi.org/10.1063/1.368468

    Article  ADS  Google Scholar 

  51. M. Copel, M. C. Reuter, M. Horn von Hoegen, and R. M. Tromp, Phys. Rev. B 42, 11682 (1990). https://doi.org/10.1103/PhysRevB.42.11682

    Article  ADS  Google Scholar 

  52. R. J. Asaro and W. A. Tiller, Metall. Trans. 3, 1789 (1972). https://doi.org/10.1007/BF02642562

    Article  Google Scholar 

  53. M. A. Grinfeld, Sov. Phys.-Dokl. 31, 831 (1986).

    ADS  Google Scholar 

  54. D. J. Srolovitz, Acta Metall. 37, 621 (1989). https://doi.org/10.1016/0001-6160(89)90246-0

    Article  Google Scholar 

  55. Y. Pang and R. Huang, Phys. Rev. B 74, 075413 (2006). https://doi.org/10.1103/PhysRevB.74.075413

    Article  ADS  Google Scholar 

  56. J. Berrehar, C. Caroli, C. Lapersonne-Meyer, and M. Schott, Phys. Rev. B 46, 13487 (1992). https://doi.org/10.1103/PhysRevB.46.13487

    Article  ADS  Google Scholar 

  57. M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).

    Google Scholar 

  58. I. Lucci, S. Charbonnier, L. Pedesseau, M. Vallet, L. Cerutti, J.-B. Rodriguez, E. Tournié, R. Bernard, A. Létoublon, N. Bertru, A. Le Corre, S. Rennesson, F. Semond, G. Patriarche, L. Largeau, et al., Phys. Rev. Mater. 2, 060401(R) (2018). https://doi.org/10.1103/PhysRevMaterials.2.060401

  59. I. N. Stranski and L. Krastanov, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl. IIb 146, 797 (1938).

    Google Scholar 

  60. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990). https://doi.org/10.1103/PhysRevLett.64.1943

    Article  ADS  Google Scholar 

  61. J. E. Prieto and I. Markov, Surf. Sci. 664, 172 (2017). https://doi.org/10.1016/j.susc.2017.05.018

    Article  ADS  Google Scholar 

  62. M. D. Rouhani, A. M. Gue, R. Malek, G. Bouyssou, and D. Esteve, Mater. Sci. Eng., B 37, 252 (1996). https://doi.org/10.1016/0921-5107(95)01452-7

    Article  Google Scholar 

  63. R. C. Cammarata, T. M. Trimble, and D. J. Srolovitz, J. Mater. Res. 15, 2468 (2000). https://doi.org/10.1557/JMR.2000.0354

    Article  ADS  Google Scholar 

  64. W. D. Nix and B. M. Clemens, J. Mater. Res. 14, 3467 (1999). https://doi.org/10.1557/JMR.1999.0468

    Article  ADS  Google Scholar 

  65. J. Leib, R. Mönig, and C. V. Thompson, Phys. Rev. Lett. 102 (25), 256101 (2009). https://doi.org/10.1103/PhysRevLett.102.256101

    Article  ADS  Google Scholar 

  66. G. Abadias, A. Fillon, J. J. Colin, A. Michel, and C. Jaouen, Vacuum 100, 36 (2014). https://doi.org/10.1016/j.vacuum.2013.07.041

    Article  ADS  Google Scholar 

  67. E. Chason and P. R. Guduru, J. Appl. Phys. 119, 191101 (2016). https://doi.org/10.1063/1.4949263

    Article  ADS  Google Scholar 

  68. C. Furgeaud, L. Simonot, A. Michel, C. Mastail, and G. Abadias, Acta Mater. 159, 286 (2018). https://doi.org/10.1016/j.actamat.2018.08.019

    Article  ADS  Google Scholar 

  69. R. Koch, Surf. Coat. Technol. 204, 1973 (2010). https://doi.org/10.1016/j.surfcoat.2009.09.047

    Article  Google Scholar 

  70. D. Magnfalt, A. Fillon, R. D. Boyd, U. Helmersson, K.  Sarakinos, and G. Abadias, J. Appl. Phys. 119, 055305 (2016). https://doi.org/10.1063/1.4941271

    Article  ADS  Google Scholar 

  71. D. L. Ma, P. P. Jing, Y. L. Gong, B. H. Wu, Q. Y. Deng, Y. T. Li, C. Z. Chen, Y. X. Leng, and N. Huang, Vacuum 160, 226 (2019). https://doi.org/10.1016/j.vacuum.2018.11.039

    Article  ADS  Google Scholar 

  72. D. P. Adams, L. J. Parfitt, J. C. Biello, S. M. Yalisove, and Z. U. Rek, Thin Solid Films 266, 52 (1995). https://doi.org/10.1016/0040-6090(95)00603-6

    Article  ADS  Google Scholar 

  73. C. Hua, X. Yan, J. Wei, J. Guo, J. Liu, L. Chen, L. Hei, and C. Li, Diamond Relat. Mater. 73, 62 (2017). https://doi.org/10.1016/j.diamond.2016.12.008

    Article  ADS  Google Scholar 

  74. M. Laugier, Vacuum 31, 155 (1981). https://doi.org/10.1016/0042-207X(81)90007-5

    Article  ADS  Google Scholar 

  75. R. C. Cammarata, Prog. Surf. Sci. 46, 1 (1994). https://doi.org/10.1016/0079-6816(94)90005-1

    Article  ADS  Google Scholar 

  76. C. Friesen and C. V. Thompson, Phys. Rev. Lett. 89, 126103 (2002). https://doi.org/10.1103/PhysRevLett.89.126103

    Article  ADS  Google Scholar 

  77. C. Friesen, S. C. Seel, and C. V. Thompson, J. Appl. Phys. 95, 1011 (2004). https://doi.org/10.1063/1.1637728

    Article  ADS  Google Scholar 

  78. C. W. Pao, D. J. Srolovitz, and C. V. Thompson, Phys. Rev. B 74, 155437 (2006). https://doi.org/10.1103/PhysRevB.74.155437

    Article  ADS  Google Scholar 

  79. R. Abermann and R. Koch, Thin Solid Films 129, 71 (1985). https://doi.org/10.1016/0040-6090(85)90096-3

    Article  ADS  Google Scholar 

  80. R. Abermann, Thin Solid Films 186, 233 (1990). https://doi.org/10.1016/0040-6090(90)90145-4

    Article  ADS  Google Scholar 

  81. R. Abermann, Vacuum 41, 1279 (1990). https://doi.org/10.1016/0042-207X(90)93933-A

    Article  ADS  Google Scholar 

  82. D. W. Hoffman and J. A. Thornton, J. Vac. Sci. Technol. 20, 355 (1982). https://doi.org/10.1116/1.571463

    Article  ADS  Google Scholar 

  83. M. Janda and O. Stefan, Thin Solid Films 112, 127 (1984). https://doi.org/10.1016/0040-6090(84)90490-5

    Article  ADS  Google Scholar 

  84. J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, J. Appl. Phys. 89, 4886 (2001). https://doi.org/10.1063/1.1352563

    Article  ADS  Google Scholar 

  85. H. Z. Yu and C. V. Thompson, Acta Mater. 67, 189 (2014). https://doi.org/10.1016/j.actamat.2013.12.031

    Article  ADS  Google Scholar 

  86. C. V. Thompson and R. Carel, J. Mech. Phys. Solids 44, 657 (1996). https://doi.org/10.1016/0022-5096(96)00022-1

    Article  ADS  Google Scholar 

  87. H. K. Pulker, Thin Solid Films 89, 191 (1982). https://doi.org/10.1016/0040-6090(82)90447-3

    Article  ADS  Google Scholar 

  88. R. W. Hoffman, in Physics of Thin Films, Ed. by G. Hass and R.E. Thun (Academic, New York, 1966), Vol. 3, p. 211.

    Google Scholar 

  89. R. W. Hoffman, Thin Solid Films 34, 185 (1976). https://doi.org/10.1016/0040-6090(76)90453-3

    Article  ADS  Google Scholar 

  90. L. B. Freund and E. Chason, J. Appl. Phys. 89, 4866 (2001). https://doi.org/10.1063/1.1359437

    Article  ADS  Google Scholar 

  91. K. L. Johnson, K. Kendall, and A. D. Roberts, Proc. R. Soc. London, Ser. A 324, 301 (1971). https://doi.org/10.1098/rspa.1971.0141

    Article  ADS  Google Scholar 

  92. R. Koch, J. Phys.: Condens. Matter 6, 9519 (1994). https://doi.org/10.1088/0953-8984/6/45/005

    Article  ADS  Google Scholar 

  93. P. Chaudhari, J. Vac. Sci. Technol. 9, 520 (1972). https://doi.org/10.1116/1.1316674

    Article  ADS  Google Scholar 

  94. M. F. Doerner and W. D. Nix, Crit. Rev. Solid State Mater. Sci. 14, 225 (1988). https://doi.org/10.1080/10408438808243734

    Article  ADS  Google Scholar 

  95. H. J. Frost, F. Spaepen, and M. F. Ashby, Scr. Metall. 16, 1165 (1982). https://doi.org/10.1016/0036-9748(82)90089-8

    Article  Google Scholar 

  96. R. Abermann, R. Koch, and R. Kramer, Thin Solid Films 58, 365 (1979). https://doi.org/10.1016/0040-6090(79)90272-4

    Article  ADS  Google Scholar 

  97. F. Spaepen, Acta Mater. 48, 31 (2000). https://doi.org/10.1016/S1359-6454(99)00286-4

    Article  ADS  Google Scholar 

  98. A. Gonzalez-González, G. M. Alonzo-Medina, A.  I.  Oliva, C. Polop, J. L. Sacedón, and E. Vasco, Phys. Rev. B 84, 155450 (2011). https://doi.org/10.1103/PhysRevB.84.155450

    Article  ADS  Google Scholar 

  99. A. González-González, C. Polop, and E. Vasco, Phys. Rev. Lett. 110, 056101 (2013). https://doi.org/10.1103/PhysRevLett.110.056101

    Article  ADS  Google Scholar 

  100. E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, Phys. Rev. Lett. 88, 156103 (2002). https://doi.org/10.1103/PhysRevLett.88.156103

    Article  ADS  Google Scholar 

  101. S. J. Tello, A. F. Bower, E. Chason, and B. W. Sheldon, Phys. Rev. Lett. 98, 216104 (2007). https://doi.org/10.1103/PhysRevLett.98.216104

    Article  ADS  Google Scholar 

  102. E. Chason, Thin Solid Films 526, 1 (2012). https://doi.org/10.1016/j.tsf.2012.11.001

    Article  ADS  Google Scholar 

  103. E. Chason, J. W. Shin, S. J. Hearne, and L. B. Freund, J. Appl. Phys. 111, 083520 (2012). https://doi.org/10.1063/1.4704683

    Article  ADS  Google Scholar 

  104. E. Chason and A. F. Bower, J. Appl. Phys. 125, 115304 (2019). https://doi.org/10.1063/1.5085313

    Article  ADS  Google Scholar 

  105. J. W. Shin and E. Chason, Phys. Rev. Lett. 103, 056102 (2009). https://doi.org/10.1103/PhysRevLett.103.056102

    Article  ADS  Google Scholar 

  106. H. Z. Yu and C. V. Thompson, Appl. Phys. Lett. 104, 141913 (2014). https://doi.org/10.1063/1.4871214

    Article  ADS  Google Scholar 

  107. D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, and E. J. Mittemeijer, J. Appl. Phys. 118 (5), 055305 (2015). https://doi.org/10.1063/1.4928162

    Article  ADS  Google Scholar 

  108. E. Chason, A. M. Engwall, Z. Rao, and T. Nishimura, J. Appl. Phys. 123, 185305 (2018). https://doi.org/10.1063/1.5030740

    Article  ADS  Google Scholar 

  109. S. J. Hearne and J. A. Floro, J. Appl. Phys. 97, 014901 (2005). https://doi.org/10.1063/1.1819972

    Article  ADS  Google Scholar 

  110. E. Chason, J. W. Shin, C.-H. Chen, A. M. Engwall, C. M. Miller, S. J. Hearne, and L. B. Freund, J. Appl. Phys. 115, 123519 (2014). https://doi.org/10.1063/1.4870051

    Article  ADS  Google Scholar 

  111. A. M. Engwall, Z. Rao, and E. Chason, Mater. Des. 110, 616 (2016). https://doi.org/10.1016/j.matdes.2016.07.089

    Article  Google Scholar 

  112. E. Chason, A. M. Engwall, F. Pei, M. Lafouresse, U. Bertocci, G. Stafford, J. A. Murphy, C. Lenihan, and D. N. Buckley, J. Electrochem. Soc. 160 (12), D3285 (2013). https://doi.org/10.1149/2.048312jes

    Article  Google Scholar 

  113. A. M. Engwall, Z. Rao, and E. Chason, J. Electrochem. Soc. 164 (13), D828 (2017). https://doi.org/10.1149/2.0921713jes

    Article  Google Scholar 

  114. R. Koch, D. Hu, and A. K. Das, Phys. Rev. Lett. 94, 146101 (2005). https://doi.org/10.1103/PhysRevLett.94.146101

    Article  ADS  Google Scholar 

  115. H. Windischmann, Crit. Rev. Solid State Mater. Sci. 17, 547 (1992). https://doi.org/10.1080/10408439208244586

    Article  ADS  Google Scholar 

  116. J. A. Floro, E. Chason, R. C. Cammarata, and D. J. Srolovitz, MRS Bull. 27, 19 (2002). https://doi.org/10.1557/mrs2002.15

    Article  Google Scholar 

  117. G. C. A. M. Janssen, Thin Solid Films 515, 6654 (2007). https://doi.org/10.1016/j.tsf.2007.03.007

    Article  ADS  Google Scholar 

  118. G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, J. Vac. Sci. Technol., A 36, 020801 (2018). https://doi.org/10.1116/1.5011790

    Article  Google Scholar 

  119. S. O. Mbam, S. E. Nwonu, O. A. Orelaja, U. S. Nwigwe, and X. F. Gou, Mater. Res. Express 6, 122001 (2019). https://doi.org/10.1088/2053-1591/ab52cd

    Article  ADS  Google Scholar 

  120. P. Eh. Hovsepian, A. A. Sugumaran, Y. Purandare, D. A. L. Loch, and A. P. Ehiasarian, Thin Solid Films 562, 132 (2014). https://doi.org/10.1016/j.tsf.2014.04.002

    Article  Google Scholar 

  121. F. Cemin, G. Abadias, T. Minea, and D. Lundin, Thin Solid Films 688, 137335 (2019). https://doi.org/10.1016/j.tsf.2019.05.054

    Article  ADS  Google Scholar 

  122. F. M. D’Heurle and J. M. Harper, Thin Solid Films 171, 81 (1989). https://doi.org/10.1016/0040-6090(89)90035-7

    Article  ADS  Google Scholar 

  123. J. A. Thornton and D. W. Hoffman, Thin Solid Films 171, 5 (1989). https://doi.org/10.1016/0040-6090(89)90030-8

    Article  ADS  Google Scholar 

  124. G. Carter, J. Phys. D: Appl. Phys. 27, 1046 (1994). https://doi.org/10.1088/0022-3727/27/5/024

    Article  ADS  Google Scholar 

  125. H. Windischmann, J. Appl. Phys. 62, 1800 (1987). https://doi.org/10.1063/1.339560

    Article  ADS  Google Scholar 

  126. L. Romano-Brandt, E. Salvatia, E. Le Bourhis, T. Moxhama, I. P. Dolbnyac, and A. M. Korsunsky, Surf. Coat. Technol. 381, 125142 (2020). https://doi.org/10.1016/j.surfcoat.2019.125142

    Article  Google Scholar 

  127. F. Cemin, G. Abadias, T. Minea, C. Furgeaud, F. Brisset, D. Solas, and D. Lundin, Acta Mater. 141, 120 (2017). https://doi.org/10.1016/j.actamat.2017.09.007

    Article  ADS  Google Scholar 

  128. G. C. A. M. Janssen and J.-D. Kamminga, Appl. Phys. Lett. 85, 3086 (2004). https://doi.org/10.1063/1.1807016

    Article  ADS  Google Scholar 

  129. J.-D. Kamminga, Th. H. de Keijser, R. Delhez, and E. J. Mittemeijer, J. Appl. Phys. 88, 6332 (2000). https://doi.org/10.1063/1.1319973

    Article  ADS  Google Scholar 

  130. C. M. Gilmore and J. A. Sprague, Thin Solid Films 419, 18 (2002). https://doi.org/10.1016/S0040-6090(02)00609-0

    Article  ADS  Google Scholar 

  131. J.-D. Kamminga, Th. H. de Keijser, R. Delhez, and E. J. Mittemeijer, Thin Solid Films 317, 169 (1998). https://doi.org/10.1016/S0040-6090(97)00614-7

    Article  ADS  Google Scholar 

  132. G. Abadias and Y. Y. Tse, J. Appl. Phys. 95, 2414 (2004). https://doi.org/10.1063/1.1646444

    Article  ADS  Google Scholar 

  133. A. Debelle, G. Abadias, A. Michel, and C. Jaouen, J. Appl. Phys. 84, 5034 (2004). https://doi.org/10.1063/1.1763637

    Article  Google Scholar 

  134. E. Chason, M. Karlson, J. J. Colin, D. Magnfält, K. Sarakinos, and G. Abadias, J. Appl. Phys. 119 (14), 145307 (2016). https://doi.org/10.1063/1.4946039

    Article  ADS  Google Scholar 

  135. A. Fillon, G. Abadias, A. Michel, and C. Jaouen, Thin Solid Films 519, 1655 (2010). https://doi.org/10.1016/j.tsf.2010.07.091

    Article  ADS  Google Scholar 

  136. J. J. Colin, G. Abadias, A. Michel, and C. Jaouen, Acta Mater. 126, 481 (2017). https://doi.org/10.1016/j.actamat.2016.12.030

    Article  ADS  Google Scholar 

  137. T. Kaub, Z. Rao, E. Chason, and G. B. Thompson, Surf. Coat. Technol. 357, 939 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.059

    Article  Google Scholar 

  138. J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, Phys. Rev. 120, 1229 (1960). https://doi.org/10.1103/PhysRev.120.1229

    Article  ADS  Google Scholar 

  139. S. Zhang, H. T. Johnson, G. J. Wagner, W. K. Liu, and K. J. Hsia, Acta Mater. 51, 5211 (2003). https://doi.org/10.1016/S1359-6454(03)00385-9

    Article  ADS  Google Scholar 

  140. L. A. Davis, in Metallic Glasses, Ed. by J. J. Gilman and H. J. Leamy (Am. Soc. Metals, Metals Park, Ohio, 1978), p. 190.

    Google Scholar 

  141. T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, Thin Solid Films 370, 258 (2000). https://doi.org/10.1016/S0040-6090(99)01090-1

    Article  ADS  Google Scholar 

  142. T. P. Leervad Pedersen, J. Kalb, W. K. Njoroge, D. Wamwangi, M. Wuttig, and F. Spaepen, Appl. Phys. Lett. 79, 3597 (2001). https://doi.org/10.1063/1.1415419

    Article  ADS  Google Scholar 

  143. B. Ben Yahia, M. S. Amara, M. Gallard, N. Burle, S. Escoubas, C. Guichet, M. Putero, C. Mocuta, M.-I. Richard, R. Chahine, C. Sabbione, M. Bernard, L. Fellouh, P. Noé, and O. Thom, Micro Nano Eng. 1, 63 (2018). https://doi.org/10.1016/j.mne.2018.10.001

    Article  Google Scholar 

  144. W. Q. Lia, F. R. Liu, Y. Z. Zhang, G. Hana, W. N. Hana, F. Liu, and N. X. Sund, J. Non-Cryst. Solids 516, 99 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.04.004

    Article  ADS  Google Scholar 

  145. H. Horikoshi and N. Tamura, Jpn. J. Appl. Phys. 2, 328 (1963). https://doi.org/10.1143/JJAP.2.328

    Article  ADS  Google Scholar 

  146. G. E. White and H. Chen, J. Appl. Phys. 68, 3317 (1990). https://doi.org/10.1063/1.346384

    Article  ADS  Google Scholar 

  147. P. P. Buaud, F. M. d’Heurle, E. A. Irene, B. K. Patnaik, and N. R. Parikh, J. Vac. Sci. Technol., B 9, 2536 (1991). https://doi.org/10.1116/1.585688

    Article  Google Scholar 

  148. P. Gergaud, O. Thomas, and B. Chenevier, J. Appl. Phys. 94, 1584 (2003). https://doi.org/10.1063/1.1590059

    Article  ADS  Google Scholar 

  149. S.-L. Zhang and F. M. d’Heurle, Thin Solid Films 213, 34 (1992). https://doi.org/10.1016/0040-6090(92)90471-M

    Article  ADS  Google Scholar 

  150. A. Fillon, G. Abadias, A. Michel, C. Jaouen, and P. Villechaise, Phys. Rev. Lett. 104, 096101 (2010). https://doi.org/10.1103/PhysRevLett.104.096101

    Article  ADS  Google Scholar 

  151. B. Krause, G. Abadias, C. Furgeaud, A. Michel, A. Resta, A. Coati, Y. Garreau, A. Vlad, D. Hauschild, and T. Baumbach, ACS Appl. Mater. Interfaces 11, 39315 (2019). https://doi.org/10.1021/acsami.9b11492

    Article  Google Scholar 

  152. D. S. Gardner, T. L. Michalka, P. A. Flinn, T. W. Barbee, Jr., K. C. Saraswat, and J. D. Meindl, Proc. 2nd Int. IEEE VLSI Multilevel Interconnection Conf. (Santa Clara, 1985), p. 102.

  153. D. Winau, R. Koch, M. Weber, K.-H. Rieder, R. K. Garg, T. Schurig, and H. Koch, Appl. Phys. Lett. 61, 279 (1992). https://doi.org/10.1063/1.107937

    Article  ADS  Google Scholar 

  154. G. Thurner and R. Abermann, Vacuum 41, 1300 (1990). https://doi.org/10.1016/0042-207X(90)93939-G

    Article  ADS  Google Scholar 

  155. Y. Xu and X.-T. Yan, Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials (Springer, London, 2010).

    Book  Google Scholar 

  156. V. K. Tolpygo and D. R. Clarke, Acta Mater. 47, 3589 (1999). https://doi.org/10.1016/S1359-6454(99)00216-5

    Article  ADS  Google Scholar 

  157. M. Murakami, J. Vac. Sci. Technol. 9, 2469 (1991). https://doi.org/10.1116/1.577258

    Article  ADS  Google Scholar 

  158. L. Rossmann, M. Northam, B. Sarley, L. Chernova, V. Viswanathan, B. Harder, and S. Raghavan, Surf. Coat. Technol. 378, 125047 (2019). https://doi.org/10.1016/j.surfcoat.2019.125047

    Article  Google Scholar 

  159. L. J. Schowalter and W. Li, Appl. Phys. Lett. 62, 696 (1993). https://doi.org/10.1063/1.108843

    Article  ADS  Google Scholar 

  160. S. Kumar, M. T. Alam, Z. Connell, and M. A. Haque, Scr. Mater. 65, 277 (2011). https://doi.org/10.1016/j.scriptamat.2011.04.030

    Article  Google Scholar 

  161. Y. H. Oh, S. I. Kim, M. Kim, S. Y. Lee, and Y. W. Kim, Ultramicroscopy 181, 160 (2017). https://doi.org/10.1016/j.ultramic.2017.05.018

    Article  Google Scholar 

  162. F. M. d’Heurle and P. S. Ho, in Thin Films—Interdiffusion and Reactions, Ed. by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978), p. 243.

    Google Scholar 

  163. R. Kirchheim, Acta Metall. Mater. 40, 309 (1992). https://doi.org/10.1016/0956-7151(92)90305-X

    Article  Google Scholar 

  164. A. Korhonen, P. Børgesen, K. N. Tu, and C. Y. Li, J. Appl. Phys. 73, 3790 (1993). https://doi.org/10.1063/1.354073

    Article  ADS  Google Scholar 

  165. L. Klinger, E. Glickman, A. Katsman, and L. Levin, Mater. Sci. Eng., B 23, 15 (1994). https://doi.org/10.1016/0921-5107(94)90271-2

    Article  Google Scholar 

  166. E. E. Glickman, Phys. Low-Dimens. Struct. 1998 (5–6), 53 (1998). https://www.elibrary.ru/item.asp?id=14009779

  167. L. Filipovic, Microelectron. Reliab. 97, 38 (2019). https://doi.org/10.1016/j.microrel.2019.04.005

    Article  Google Scholar 

  168. I. A. Blech and C. Herring, Appl. Phys. Lett. 29, 131 (1976). https://doi.org/10.1063/1.89024

    Article  ADS  Google Scholar 

  169. P.-C. Wang, G. S. Cargill III, I. C. Noyan, and C.-K. Hu, Appl. Phys. Lett. 72, 1296 (1998). https://doi.org/10.1063/1.120604

    Article  ADS  Google Scholar 

  170. K. N. Tu, J. Appl. Phys. 94, 5451 (2003). https://doi.org/10.1063/1.1611263

    Article  ADS  Google Scholar 

  171. K. N. Tu, Y. Liu, and M. Li, Appl. Phys. Rev. 4, 011101 (2017). https://doi.org/10.1063/1.4974168

    Article  ADS  Google Scholar 

  172. A. Ababneh, U. Schmid, J. Hernando, J. L. Sanchez-Rajas, and H. Seidel, Mater. Sci. Eng., B 172, 253 (2010). https://doi.org/10.1016/j.mseb.2010.05.026

    Article  Google Scholar 

  173. H. Liu, F. Zeng, G. Tang, F. Pan, Appl. Surf. Sci. 270, 225 (2013). https://doi.org/10.1016/j.apsusc.2013.01.005

    Article  ADS  Google Scholar 

  174. S. Dutta, A. A. Jeyaseelan, and S. Sruthi, Thin Solid Films 562, 190 (2014). https://doi.org/10.1016/j.tsf.2014.04.072

    Article  ADS  Google Scholar 

  175. L. Yin, W. Hu, M. Wu, J. Shi, and J. Zhu, J. Mater. Sci.: Mater. Electron. 30, 14072 (2019). https://doi.org/10.1007/s10854-019-01772-5

    Article  Google Scholar 

  176. R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, J. Phys. Chem. B 101, 10141 (1997). https://doi.org/10.1021/jp971522c

    Article  Google Scholar 

  177. V. A. Ivanov, A. S. Sakharov, and M. E. Konyzhev, Usp. Prikl. Fiz. 1 (6), 697 (2013).

    Google Scholar 

  178. J.-F. Vanhumbeeck and J. Proost, Electrochim. Acta 53 (21), 6165 (2008). https://doi.org/10.1016/j.electacta.2007.11.028

    Article  Google Scholar 

  179. A. H. Heuer, H. Kahn, P. M. Natishan, F. J. Martin, and L. E. Cross, Electrochim. Acta 58, 157 (2011). https://doi.org/10.1016/j.electacta.2011.09.027

    Article  Google Scholar 

  180. F. Blaffart, Q. Van Overmeere, T. Pardoen, and J. Proost, J. Solid State Electrochem. 17, 1945 (2013). https://doi.org/10.1007/s10008-013-2036-0

    Article  Google Scholar 

  181. R. M. McMeeking and C. M. Landis, J. Appl. Mech. 72, 581 (2005). https://doi.org/10.1115/1.1940661

    Article  ADS  Google Scholar 

  182. J.-Ph. Jay, F. Le Berre, S. P. Pogossian, and M. V. Indenbom, J. Magn. Magn. Mater. 322, 2203 (2010). https://doi.org/10.1016/j.jmmm.2010.02.011

    Article  ADS  Google Scholar 

  183. R. Varghese, R. Viswan, K. Joshi, S. Seifikar, Y. Zhou, J. Schwartz, and S. Priya, J. Magn. Magn. Mater. 363, 179 (2014). https://doi.org/10.1016/j.jmmm.2014.03.076

    Article  ADS  Google Scholar 

  184. S. H. Lim, H. J. Kim, S. M. Na, and S. J. Suh, J. Magn. Magn. Mater. 239, 546 (2002). https://doi.org/10.1016/S0304-8853(01)00660-6

    Article  ADS  Google Scholar 

  185. S. S. Aplesnin, A. N. Masyugin, M. N. Sitnicov, U. I. Rybina, and T. Ishibashi, J. Magn. Magn. Mater. 464, 44 (2018). https://doi.org/10.1016/j.jmmm.2018.05.038

    Article  ADS  Google Scholar 

  186. A. Shintani, S. Sugaki, and H. Nakashima, J. Appl. Phys. 51, 4197 (1980). https://doi.org/10.1063/1.328277

    Article  ADS  Google Scholar 

  187. J.-D. Kim, S.-I. Pyun, and M. Seo, Electrochim. Acta 48 (9), 1123 (2003). https://doi.org/10.1016/S0013-4686(02)00823-X

    Article  Google Scholar 

  188. S. M. Kim, S. H. Jin, Y. J. Lee, and M. H. Lee, Electrochim. Acta 252, 67 (2017). https://doi.org/10.1016/j.electacta.2017.08.157

    Article  Google Scholar 

  189. J. Proost and A. Delvaux, Electrochim. Acta 322, 134752 (2019). https://doi.org/10.1016/j.electacta.2019.134752

    Article  Google Scholar 

  190. O. Cao and J. A. Rogers, Adv. Mater. 21, 29 (2009). https://doi.org/10.1002/adma.200801995

    Article  Google Scholar 

  191. J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010). https://doi.org/10.1126/science.1182383

    Article  ADS  Google Scholar 

  192. X. M. Luo, B. Zhang, and G. P. Zhang, Nano Mater. Sci. 1 (3), 198 (2019). https://doi.org/10.1016/j.nanoms.2019.02.003

    Article  Google Scholar 

  193. W. Gao, Y. Zhu, Y. Wang, G. Yuan, and J. M. Liu, J. Materiomics 6, 1 (2020). https://doi.org/10.1016/j.jmat.2019.11.001

  194. C.-C. Lee, Thin Solid Films 544, 443 (2013). https://doi.org/10.1016/j.tsf.2013.02.084

    Article  ADS  Google Scholar 

  195. D. Faurie, P.-O. Renault, E. Le Bourhis, G. Geandier, P. Goudeau, and D. Thiaudiere, Appl. Surf. Sci. 306, 70 (2014). https://doi.org/10.1016/j.apsusc.2014.02.032

    Article  Google Scholar 

  196. A. A. Vereschaka, S. N. Grigoriev, N. N. Sitnikov, G. V. Oganyan, and A. Batako, Surf. Coat. Technol. 332, 198 (2017). https://doi.org/10.1016/j.surfcoat.2017.10.027

    Article  Google Scholar 

  197. K. Bobzin, T. Brögelmann, N. C. Kruppe, and M. Carlet, Surf. Coat. Technol. 385, 125370 (2020). https://doi.org/10.1016/j.surfcoat.2020.125370

    Article  Google Scholar 

  198. A. Grill, Diamond Relat. Mater. 12, 166 (2003). https://doi.org/10.1016/S0925-9635(03)00018-9

    Article  ADS  Google Scholar 

  199. M. Qadir, Y. Li, and C. Wen, Acta Biomater. 89, 14 (2019). https://doi.org/10.1016/j.actbio.2019.03.006

    Article  Google Scholar 

  200. H. Tian, N. Saka, and E. Rabinowicz, Wear 142, 57 (1991). https://doi.org/10.1016/0043-1648(91)90152-K

    Article  Google Scholar 

  201. N. K. Myshkin, V. V. Konchits, and M. Braunovich, Electrical Contacts (Intellekt, Dolgoprudnyi, 2008) [in Russian].

    Google Scholar 

  202. E. V. Torskaya, A. M. Merzin, I. V. Mosyagina, and Yu. V. Kornev, Phys. Mesomech. 21, 475 (2018). https://doi.org/10.1134/S1029959918060012

    Article  Google Scholar 

  203. Q. Liu, T. He, W. Y. Guo, Y. Baia, Y. S. Ma, Z. D. Chang, H. B. Liu, Y. X. Zhou, F. Ding, Y. W. Sun, Z. F. Han, and J. J. Tang, Surf. Coat. Technol. 370, 362 (2019). https://doi.org/10.1016/j.surfcoat.2019.03.044

    Article  Google Scholar 

  204. R. Colaço, in Fundamentals of Friction and Wear on the Nanoscale, Ed. by E. Gnecco and E. Meyer (Springer, Heidelberg, 2007), p. 453.

    Google Scholar 

  205. M. A. Fortes, R. Colaço, and M. F. Vaz, Wear 230 (1), 1 (1999). https://doi.org/10.1016/S0043-1648(99)00086-1

    Article  Google Scholar 

Download references

Funding

This study was performed as a part of a state order to the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, project III.23.1.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Shugurov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shugurov, A.R., Panin, A.V. Mechanisms of Stress Generation in Thin Films and Coatings. Tech. Phys. 65, 1881–1904 (2020). https://doi.org/10.1134/S1063784220120257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220120257

Navigation