Skip to main content
Log in

Natural supersymmetry: status and prospects

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The realization that supersymmetry (SUSY), if softly broken at the weak scale, can stabilize the Higgs sector led many authors to explore the role it may play in particle physics. It was widely anticipated that superpartners would reveal themselves once the TeV scale was probed in high energy collisions. Experiments at the LHC have not yet revealed any sign for direct production of superpartners, or for any other physics beyond the Standard Model. This has led to some authors to question whether weak scale SUSY has a role to play in stabilizing the Higgs sector, and to seek alternate mechanisms for stabilizing the weak scale. We reevaluate the early arguments that led to the expectations for light superpartners, and show that SUSY models with just the minimal particle content may well be consistent with LHC (and other) data and simultaneously serve to stabilize the Higgs sector, if model parameters generally regarded as independent turned out to be appropriately correlated. In our view, it would be premature to ignore this possibility, given that we do not understand the underlying mechanism of SUSY breaking. We advocate using the electroweak scale quantity, ΔEW, to determine whether a given SUSY spectrum might arise from a theory with low fine-tuning, even when the parameters correlations mentioned above are present. We find that (modulo technical caveats) all such models contain light higgsinos and that this leads to the possibility of new strategies for searching for SUSY. We discuss phenomenological implications of these models for SUSY searches at the LHC and its luminosity and energy upgrades, as well as at future electron-positron colliders. We conclude that natural SUSY, defined as no worse than a part in 30 fine-tuning, will not escape detection at a pp collider operating at 27 TeV and an integrated luminosity of 15 ab−1, or at an electron-positron collider with a centre-of-mass energy of 600 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Gildner, Phys. Rev. D 14, 1667 (1976)

    Article  ADS  Google Scholar 

  2. G. Senjanovic, aXiv:2001.10988

  3. E. Witten, Nucl. Phys. B 188, 513 (1981)

    Article  ADS  Google Scholar 

  4. R. Kaul, Phys. Lett. B 109, 19 (1982)

    Article  ADS  Google Scholar 

  5. S. Dimopoulos, H. Georgi, Nucl. Phys. B 193, 150 (1981)

    Article  ADS  Google Scholar 

  6. N. Sakai, Z. Phys. C 11, 153 (1981)

    Article  ADS  Google Scholar 

  7. A. Surinyan et al., arXiv:1911.07558; for squark mass bounds and updates, see Run 2 Summaries on the CMS Public Physics Results web page

  8. ATLAS Collaboration, ATLAS-CONF-2019-040, 2019

  9. ATLAS Collaboration, M. Aboud et al., J. High Energy Phys. 1806, 108 (2018)

    ADS  Google Scholar 

  10. , A. Surinyan et al., J. High Energy Phys. 05, 032 (2020)

    Article  Google Scholar 

  11. ATLAS Collaboration, G. Aad et al., Eur. Phys. J. C 80, 691 (2020)

    Article  ADS  Google Scholar 

  12. ATLAS Collaboration, G. Aad et al., Eur. Phys. J. C 80, 123 (2020)

    Article  ADS  Google Scholar 

  13. ATLAS Collaboration, G. Aad et al., Phys. Rev. D 101, 072001 (2020)

    Article  ADS  Google Scholar 

  14. Particle Data Group, M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018); see [15] for a recent review of flavour physics

    Google Scholar 

  15. J. Zupan, arXiv:1903.05062

  16. G. Bennett et al. (E821 Experiment), Phys. Rev. D 73, 072003 (2006)

    Article  ADS  Google Scholar 

  17. A. Flenberg, arXiv:1905.05318 for prospects for the E989 experiment at Fermilab

  18. Xenon-1t Collaboration, E. Aprile et al., Phys. Rev. Lett. 121, 111302 (2018)

    Article  ADS  Google Scholar 

  19. LUX Collaboration, D.S. Akerib et al., Phys. Rev. Lett. 118, 021303 (2017)

    Article  ADS  Google Scholar 

  20. PandaX-II Collaboration, X. Cul et al., Phys. Rev. Lett. 119, 181302 (2017)

    Article  ADS  Google Scholar 

  21. S. Weinberg, Phys. Rev. D 13, 974 (1976)

    Article  ADS  Google Scholar 

  22. S. Weinberg, Phys. Rev. D 19, 1277 (1979)

    Article  ADS  Google Scholar 

  23. L. Susskind, Phys. Rev. D 20, 2619 (1979)

    Article  ADS  Google Scholar 

  24. For an overview see, C. Hill, E. Simmons, Phys. Rep. 381, 235 (2003)

    Article  ADS  Google Scholar 

  25. K. Black, R. Sekhar Chivukula, M. Narain, in [14]

  26. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)

  27. For a phenomenological overview, see Y. Gershtein, A. Pomarol, in [14]

  28. P. Graham, D.E. Kaplan, S. Rajendran, Phys. Rev. Lett. 115, 221801 (2015)

    Article  ADS  Google Scholar 

  29. S. Martin, A Supersymmetry Primer, arXiv:hep-ph/9709356 (1997)

  30. R. Godbole, P. Roy, Theory and Phenomenology of Sparticles (World Scientific, 2005)

  31. H. Baer, X. Tata, Weak Scale Supersymmetry (Cambridge, 2006)

  32. P. Binetruy, Theory, Experiment and Cosmology (Oxford, 2006)

  33. R. Haag, J. Lopuzanski, M. Sohnius, Nucl. Phys. B 88, 257 (1975)

    Article  ADS  Google Scholar 

  34. Y. Golfand, E. Likhtman, JETP Lett. 13, 323 (1971)

    ADS  Google Scholar 

  35. D. Volkov, V. Akulov, JETP Lett. 16, 621 (1972)

    Google Scholar 

  36. D. Volkov, V. Akulov, Phys. Lett. B 46, 109 (1973)

    Article  ADS  Google Scholar 

  37. J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)

    Article  ADS  Google Scholar 

  38. A. Neveau, J. Schwarz, Nucl. Phys. B 31, 86 (1971)

    Article  ADS  Google Scholar 

  39. P. Ramond, Phys. Rev. D 3, 2415 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Gervais, B. Sakita, Nucl. Phys. B 34, 632 (1971)

    Article  ADS  Google Scholar 

  41. D. Volkov, V. Soroka, JETP Lett. 18, 312 (1973)

    ADS  Google Scholar 

  42. D. Freedman, P. van Nieuwenhuizen, S. Ferrara, Phys. Rev. D 13, 3214 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  43. E. Cremmer, S. Ferrara, L. Girardello, A. van Proeyen, Nucl. Phys. B 212, 413 (1983)

    Article  ADS  Google Scholar 

  44. P. Nath, R. Arnowitt, A. Chamseddine, Applied N = 1 Supergravity, Lectures at 1983 Summer Workshop on Particle Physics, NUB-2613

  45. P. Hut, Phys. Lett. B 69, 85 (1977)

    Article  ADS  Google Scholar 

  46. H. Pagels, J. Primack, Phys. Rev. Lett. 48, 223 (1982)

    Article  ADS  Google Scholar 

  47. S. Weinberg, Phys. Rev. Lett. 50, 387 (1983)

    Article  ADS  Google Scholar 

  48. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  49. J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  50. U. Amaldi, W. de Boer, H. Fürstenau, Phys. Lett. B 260, 447 (1991)

    Article  ADS  Google Scholar 

  51. J. Ellis, S. Kelley, D. Nanopoulos, Phys. Lett. B 260, 131 (1991)

    Article  ADS  Google Scholar 

  52. P. Langacker, M. Luo, Phys. Rev. D 44, 871 (1991)

    Article  Google Scholar 

  53. See W. Marciano, G. Senjanovic, Phys. Rev. D 25, 3092 (1982) for an early analysis of sin2θW in SUSY GUTs

    Article  ADS  Google Scholar 

  54. ATLAS Collaboration, Phys Lett. B 784, 345 (2018)

    Article  ADS  Google Scholar 

  55. , CMS PAS HIG-19-004, 2019

  56. H.E. Haber, R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991)

    Article  ADS  Google Scholar 

  57. J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 257, 83 (1991)

    Article  ADS  Google Scholar 

  58. Y. Okada, M. Yamaguchi, T. Yanagida, Prog. Theor. Phys. 85, 1 (1991)

    Article  ADS  Google Scholar 

  59. M.S. Carena, H.E. Haber, Prog. Part. Nucl. Phys. 50, 63 (2003)

    Article  ADS  Google Scholar 

  60. M. Drees, Int. J. Mod. Phys. A 4, 3635 (1989)

    Article  ADS  Google Scholar 

  61. G. Kane, C. Kolda, J. Wells, Phys. Rev. Lett. 70, 2686 (1993)

    Article  ADS  Google Scholar 

  62. R. Kitano, Y. Nomura, Phys. Lett. B 631, 58 (2005)

    Article  ADS  Google Scholar 

  63. R. Kitano, Y. Nomura, Phys. Rev. D 73, 095004 (2006)

    Article  ADS  Google Scholar 

  64. M. Papucci, J.T. Ruderman, A. Weiler, J. High Energy Phys. 1209, 035 (2012)

    Article  ADS  Google Scholar 

  65. J.R. Ellis, K. Enqvist, D.V. Nanopoulos, F. Zwirner, Mod. Phys. Lett. A 1, 57 (1986)

    Article  ADS  Google Scholar 

  66. R. Barbieri, G. Giudice, Nucl. Phys. B 306, 63 (1988)

    Article  ADS  Google Scholar 

  67. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev, X. Tata, Phys. Rev. D 87, 115028 (2013)

    Article  ADS  Google Scholar 

  68. H. Baer, V. Barger, P. Huang, A. Mustafayev, X. Tata, Phys. Rev. Lett. 109, 161802 (2012)

    Article  ADS  Google Scholar 

  69. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev, X. Tata, Phys. Rev. D 87, 035017 (2013)

    Article  ADS  Google Scholar 

  70. K. Chan, U. Chattopadhyay, P. Nath, Phys. Rev. D 58, 096004 (1998)

    Article  ADS  Google Scholar 

  71. L. Girardello, M.T. Grisaru, Nucl. Phys. B 194, 65 (1982)

    Article  ADS  Google Scholar 

  72. This is more recently re-emphhasized by G.G. Ross, K. Schmidt-Hoberg, F. Staub, Phys. Lett. B 759, 110 (2016)

    Article  ADS  Google Scholar 

  73. A. Nelson, T. Roy, Phys. Rev. Lett. 114, 201802 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  74. S.P. Martin, Phys. Rev. D 92, 035004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  75. T. Cohen, J. Kearney, M. Luty, Phys. Rev. D 91, 075004 (2014)

    Article  ADS  Google Scholar 

  76. H. Baer, V. Barger, M. Padeffke-Kirkland, X. Tata, Phys. Rev. D 91, 075005 (2015)

    Article  ADS  Google Scholar 

  77. A. Mustafayev, X. Tata, Ind. J. Phys. 88, 991 (2014)

    Article  Google Scholar 

  78. P. Chankowski, J. Ellis, M. Olechowski, S. Pokorski, Nucl. Phys. B 544, 39 (1999)

    Article  ADS  Google Scholar 

  79. S. King, G. Kane, Phys. Lett. B 451, 113 (1999)

    Article  ADS  Google Scholar 

  80. S. Antusch, L. Calibbi, V. Maurer, M. Monaco, M. Spinrath, Phys. Rev. D 85, 035025 (2012)

    Article  ADS  Google Scholar 

  81. S. Antusch, L. Calibbi, V. Maurer, M. Monaco, M. Spinrath, J. High Energy Phys. 1301, 187 (2013)

    Article  ADS  Google Scholar 

  82. H. Baer, V. Barger, D. Mickelson, Phys. Rev. D 88, 095013 (2013)

    Article  ADS  Google Scholar 

  83. A. Chamseddine, R. Arnowitt, P. Nath, Phys. Rev. Lett. 49, 970 (1982)

    Article  ADS  Google Scholar 

  84. R. Barbieri, S. Ferrara, C. Savoy, Phys. Lett. B 119, 343 (1983)

    Article  ADS  Google Scholar 

  85. N. Ohta, Prog. Theor. Phys. 70, 542 (1983)

    Article  ADS  Google Scholar 

  86. L. Hall, J. Lykken, S. Weinberg, Phys. Rev. D 27, 2359 (1983)

    Article  ADS  Google Scholar 

  87. L. Ibañez, G. Ross, Phys. Lett. B 110, 215 (1982)

    Article  ADS  Google Scholar 

  88. K. Inoue, A. Kakuto, H. Komatsu, S. Takeshita, Prog. Theor. Phys. 68, 927 (1982)

    Article  ADS  Google Scholar 

  89. K. Inoue, A. Kakuto, H. Komatsu, S. Takeshita, Prog. Theor. Phys. 71, 413 (1984)

    Article  ADS  Google Scholar 

  90. L. Ibañez, Phys. Lett. B 118, 73 (1982)

    Article  ADS  Google Scholar 

  91. J. Ellis, J. Hagelin, D. Nanopoulos, M. Tamvakis, Phys. Lett. B 125, 275 (1983)

    Article  ADS  Google Scholar 

  92. L. Alvarez-Guamé, J. Polchinski, M. Wise, Nucl. Phys. B 221, 495 (1983)

    Article  ADS  Google Scholar 

  93. D. Matalliotakis, H.P. Nilles, Nucl. Phys. B 435, 115 (1995)

    Article  ADS  Google Scholar 

  94. V. Berezinsky, A. Bottino, J. Ellis, A. Fornengo, G. Mignola, S. Scopel, Astropart. Phys. 5, 1 (1996)

    Article  ADS  Google Scholar 

  95. P. Nath, R. Arnowitt, Phys. Rev. D 56, 2820 (1997)

    Article  ADS  Google Scholar 

  96. J. Ellis, K. Olive, Y. Santoso, Phys. Lett. B 539, 107 (2002)

    Article  ADS  Google Scholar 

  97. J. Ellis, T. Falk, K. Olive, Y. Santoso, Nucl. Phys. B 652, 259 (2003)

    Article  ADS  Google Scholar 

  98. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, J. High Energy Phys. 0507, 065 (2005)

    Article  ADS  Google Scholar 

  99. E. Cremmer, S. Ferrara, L. Girardello, A. van Proeyen, Phys. Lett. B 116, 231 (1982)

    Article  ADS  Google Scholar 

  100. S.P. Martin, Phys. Rev. D 79, 095019 (2009)

    Article  ADS  Google Scholar 

  101. L. Randall, R. Sundrum, Nucl. Phys. B 557, 79 (1999)

    Article  ADS  Google Scholar 

  102. G. Giudice, M. Luty, R. Rattazzi, H. Murayama, J. High Energy Phys. 9812, 027 (1998)

    Article  ADS  Google Scholar 

  103. A. Pomarol, R. Rattazzi, J. High Energy Phys. 9905, 013 (1999)

    Article  ADS  Google Scholar 

  104. H. Baer, V. Barger, D. Sengupta, Phys. Rev. D 98, 015039 (2018)

    Article  ADS  Google Scholar 

  105. H. Baer, V. Barger, H. Serce, X. Tata, Phys. Rev. D 94, 115017 (2016)

    Article  ADS  Google Scholar 

  106. K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski, S. Pokorski, J. High Energy Phys. 0411, 076 (2004)

    Article  ADS  Google Scholar 

  107. K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski, Nucl. Phys. B 718, 113 (2005)

    Article  ADS  Google Scholar 

  108. J.P. Conlon, F. Quevedo, K. Suruliz, J. High Energy Phys. 0508, 007 (2005)

    Article  ADS  Google Scholar 

  109. K. Choi, K-S. Jeong, K. Okumura, J. High Energy Phys. 0509, 039 (2005)

    Article  ADS  Google Scholar 

  110. O. Lebedev, H.P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P.K.S. Vaudrevange, A. Wingerter, Phys. Lett. B 645, 88 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  111. M. Badziak, S. Krippendorf, H.P. Nilles, M.W. Winkler, J. High Energy Phys. 1303, 094 (2013)

    Article  ADS  Google Scholar 

  112. H.P. Nilles, Adv. High Energy Phys. 2015, 412487 (2015)

    Article  Google Scholar 

  113. H. Baer, V. Barger, M. Savoy, H. Serce, X. Tata, J. High Energy Phys. 1706, 101 (2017)

    Article  ADS  Google Scholar 

  114. H. Baer, V. Barger, P. Huang, Jour. High Energy Phys. 1111, 031 (2011)

    Article  ADS  Google Scholar 

  115. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev, W. Sreethawong, X. Tata, J. High Energy Phys. 1312, 013 (2013)

    Article  ADS  Google Scholar 

  116. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev, W. Sreethawong, X. Tata, J. High Energy Phys. 1506, 053 (2015) (Erratum)

    Article  ADS  Google Scholar 

  117. H. Baer, A. Mustafayev, X. Tata, Phys. Rev. D 89, 055007 (2014)

    Article  ADS  Google Scholar 

  118. C. Han, A. Kobakhidze, N. Liu, A. Saavedra, L. Wu, J.M. Yang, J. High Energy Phys. 1402, 049 (2014)

    Article  ADS  Google Scholar 

  119. P. Schwaller, J. Zurita, J. High Energy Phys. 1403, 060 (2014)

    Article  ADS  Google Scholar 

  120. D. Barducci, A. Belyaev, A. Bharucha, W. Porod, V. Sanz, J. High Energy Phys. 1507, 066 (2015) express a more optimistic viewpoint for a detection of the monojet signal

    Article  ADS  Google Scholar 

  121. G. Giudice, T. Han, K. Wang, L-T. Wang, Phys. Rev. D 81, 115011 (2010)

    Article  ADS  Google Scholar 

  122. Z. Han, G. Kribs, A. Martin, A. Menon, Phys. Rev. D 89, 075007 (2014)

    Article  ADS  Google Scholar 

  123. H. Baer, A. Mustafayev, X. Tata, Phys. Rev. D 90, 115007 (2014)

    Article  ADS  Google Scholar 

  124. ATLAS Collaboration, M. Aboud et al., Phys. Rev. D 97, 052010 (2018)

    Article  ADS  Google Scholar 

  125. G. Aad et al., Phys. Rev. D 101, 052005 (2015)

    Article  ADS  Google Scholar 

  126. A. Sirunyan et al., Phys. Lett. B 782, 440 (2018)

    Article  ADS  Google Scholar 

  127. , CMS-PAS-FTR-18-001, 2018

  128. , ATL-PHYS-PUB-2018-031, 2018

  129. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev, W. Shreethawong, X. Tata, Phys. Rev. Lett. 110, 151801 (2013)

    Article  ADS  Google Scholar 

  130. V. Barger, W.-Y. Keung, R. Phillips, Phys. Rev. Lett. 55, 166 (1985)

    Article  ADS  Google Scholar 

  131. H. Baer, X. Tata, J. Woodside, Phys. Rev. D 45, 142 (1992)

    Article  ADS  Google Scholar 

  132. R. Barnett, J. Gunion, H. Haber, Phys. Lett. B 315, 349 (1993)

    Article  ADS  Google Scholar 

  133. H. Baer, V. Barger, J. Gainer, M. Savoy, D. Sengupta, X. Tata, Phys. Rev. D 97, 035012 (2018)

    Article  ADS  Google Scholar 

  134. H. Baer, V. Barger, J. Gainer, P. Huang, M. Savoy, D. Dengupta, X. Tata, Eur. Phys. J. C 77, 499 (2017)

    Article  ADS  Google Scholar 

  135. , ATL-PHYS-PUB-2018-021, 2018

  136. A. Chamseddine, P. Nath, R. Arnowitt, Phys. Lett. B 129, 445 (1983)

    Article  ADS  Google Scholar 

  137. D. Dicus, S. Nandi, X. Tata, Phys. Lett. B 129, 451 (1983)

    Article  ADS  Google Scholar 

  138. H. Baer, K. Hagiwara, X. Tata, Phys. Rev. Lett. 57, 294 (1986)

    Article  ADS  Google Scholar 

  139. H. Baer, K. Hagiwara, X. Tata, Phys. Rev. D 35, 1598 (1987)

    Article  ADS  Google Scholar 

  140. R. Arnowitt, P. Nath, Mod. Phys. Lett. A 2, 331 (1987)

    Article  ADS  Google Scholar 

  141. H. Baer, C.H. Chen, F. Paige, X. Tata, Phys. Rev. D 53, 6241 (1996)

    Article  ADS  Google Scholar 

  142. H. Baer, T. Krupovnickas, X. Tata, J. High Energy Phys. 0307, 020 (2003)

    Article  ADS  Google Scholar 

  143. H. Baer, V. Barger, D. Mickelson, A. Mustafayev, X. Tata, J. High Energy Phys. 1406, 172 (2014)

    Article  ADS  Google Scholar 

  144. H. Baer, M. Berggren, K. Fujii, J. List, S-L. Lehtinen, T. Tanabe, J. Yan, Phys. Rev. D 101, 095026 (2020)

    Article  ADS  Google Scholar 

  145. A. Abada et al., Eur. Phys. J. Special Topics 228, 1109 (2019)

    Article  ADS  Google Scholar 

  146. O. Bruennig, O. Dominguez, S. Myers, L. Rossi, E. Todesco, F. Zimmerman, arXiv:1108.1617

  147. H. Baer, V. Barger, J. Gainer, H. Serce, X. Tata, Phys. Rev. D 96, 115008 (2017)

    Article  ADS  Google Scholar 

  148. H. Baer, V. Barger, J. Gainer, D. Sengupta, H. Serce, X. Tata, Phys. Rev. D 98, 075010 (2018)

    Article  ADS  Google Scholar 

  149. T. Han, A. Ismail, B.S. Estbaghi, Phys. Lett. B 793, 354 (2019)

    Article  ADS  Google Scholar 

  150. A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 97, 114025 (2018)

    Article  ADS  Google Scholar 

  151. A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 101, 014029 (2020)

    Article  ADS  Google Scholar 

  152. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 77, 877 (2017)

    Article  Google Scholar 

  153. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 80, 241 (2020)

    Article  ADS  Google Scholar 

  154. LHCb Collaboration, R. Aalj et al., Phys. Rev. Lett. 118, 19801 (2017)

    Google Scholar 

  155. C. Bobeth, M. Gorbahn, T. Herman, M. Misiak, E. Stamou, M. Steinhauser, Phys. Rev. Lett. 112, 101801 (2014)

    Article  ADS  Google Scholar 

  156. E. Aprile et al., JCAP 1604, 027 (2016)

    Article  ADS  Google Scholar 

  157. D. Akerib et al., arXiv:1509.02910

  158. H. Baer, A. Lessa, J. High Energy Phys. 1106, 027 (2011)

    Article  ADS  Google Scholar 

  159. H. Baer, A. Lessa, W. Sreethawong, JCAP 1106, 036 (2011)

    Google Scholar 

  160. K.J. Bae, H. Baer, V. Barger, M. Savoy, H. Serce, arXiv:1503.04137 [hep-ph] for dark matter contributions from the axion sector in the context of the RNS scenario

  161. K.J. Bae, H. Baer, Lessa, arXiv:1306.2986 [hep-ph] for an overview

  162. G. Gelmini, P. Gondolo, Phys. Rev. D 74, 023510 (2006)

    Article  ADS  Google Scholar 

  163. G. Gelmini, P. Gondolo, A. Soldatenko, C. Yaguna, Phys. Rev. D 74, 083514 (2006)

    Article  ADS  Google Scholar 

  164. H. Baer, V. Barger, D. Mickelson, Phys. Lett. B 726, 330 (2013)

    Article  ADS  Google Scholar 

  165. H. Baer, V. Barger, S. Salam, Phys. Rev. Res. 1, 023001 (2019)

    Article  ADS  Google Scholar 

  166. H. Baer, V. Barger, S. Salam, H. Serce, K. Sinha, J. High Energy Phys. 1904, 043 (2019)

    Article  ADS  Google Scholar 

  167. H. Baer, V. Barger, D. Sengupta, Phys. Rev. Res. 1, 033179 (2019)

    Article  Google Scholar 

  168. V. Agrawal, S. Barr, J. Donoghue, D. Seckel, Phys. Rev. D 57, 5480 (1998)

    Article  ADS  Google Scholar 

  169. See H. Baer, V. Barger, S. Salam, D. Sengupta, K. Sinha, Eur. Phys. J. Special Topics 229, 3085 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xerxes Tata.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tata, X. Natural supersymmetry: status and prospects. Eur. Phys. J. Spec. Top. 229, 3061–3083 (2020). https://doi.org/10.1140/epjst/e2020-000016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000016-5

Navigation