Skip to main content
Log in

The movement of a one-dimensional Wigner solid explained by a modified Frenkel-Kontorova model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We propose a Frenkel-Kontorova model for a 1D chain of electrons forming a Wigner solid over 4He. It is a highly idealized picture, but with the model at hand we can study the movement of the chain. We find out that the energetically most preferable movement is the successive sliding of a kink or an antikink through the chain. Then the force for a movement does not depend on the length of the chain. The force uniformly applied to all electrons must be larger than a force exciting only a kink or an antikink. We calculate two cases, one with stiff ‘springs’ between the electrons and one with weak ‘springs’. The side potential of the ‘dimples’ is additionally damped at the periphery. We study the cases with 33, 66, and 101 particles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Shapir, A. Hamo, S. Pecker, C.P. Moca, Ö. Legeza, G. Zarand, S. Ilani, Science 364, 870 (2019)

    Article  ADS  Google Scholar 

  2. C.C. Grimes, G. Adams, Phys. Rev. Lett. 42, 795 (1979)

    Article  ADS  Google Scholar 

  3. D.S. Fisher, B.I. Halperin, P.M. Platzman, Phys. Rev. Lett. 42, 798 (1979)

    Article  ADS  Google Scholar 

  4. E.Y. Andrei (ed.), in Two-Dimensional Electron Systems on Helium and other Cryogenic Substrates, Physics and Chemistry of Materials with Low-Dimensional Structures (PCMALS) (Springer, Berlin, 1997), vol. 19

  5. M.I. Dykman, C. Fang-Yen, M.J. Lea, Phys. Rev. B 55, 16249 (1997)

    Article  ADS  Google Scholar 

  6. Y.P. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)

  7. G.F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)

  8. J. Klier, I. Doicescu, P. Leiderer, J. Low Temp. Phys. 121, 603 (2000)

    Article  ADS  Google Scholar 

  9. P. Glasson, S.E. Andresen, G. Ensell, V. Dotsenko, W. Bailey, P. Fozooni, A. Kristensen, M.J. Lea, Physica B 284-288, 1916 (2000)

    Article  ADS  Google Scholar 

  10. H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. B 82, 201104 (2010)

    Article  ADS  Google Scholar 

  11. H. Ikegami, H. Akimoto, D.G. Rees, K. Kono, Phys. Rev. Lett. 109, 236802 (2012)

    Article  ADS  Google Scholar 

  12. D.G. Rees, H. Ikegami, K. Kono, J. Phys. Soc. Jpn. 82, 124602 (2013)

    Article  ADS  Google Scholar 

  13. D.G. Rees, N.R. Beysengulov, J.J. Lin, K. Kono, Phys. Rev. Lett. 116, 206801 (2016)

    Article  ADS  Google Scholar 

  14. M.I. Dykman, Phys. 9, 54 (2016)

    Article  Google Scholar 

  15. D.G. Rees, S.S. Yeh, B.C. Lee, K. Kono, J.J. Lin, Phys. Rev. B 96, 205438 (2017)

    Article  ADS  Google Scholar 

  16. A.O. Badrutdinov, A.V. Smorodin, D.G. Rees, J.Y. Lin, D. Konstantinov, Phys. Rev. B 94, 195311 (2016)

    Article  ADS  Google Scholar 

  17. J.Y. Lin, A.V. Smorodin, A.O. Badrutdinov, D. Konstantinov, Phys. Rev. B 98, 085412 (2018)

    Article  ADS  Google Scholar 

  18. J.Y. Lin, A.V. Smorodin, A.O. Badrutdinov, D. Konstantinov, J. Low Temp. Phys. 195, 289 (2019)

    Article  ADS  Google Scholar 

  19. Y.P. Monarkha, Europ. Phys. Lett. 118, 67001 (2017)

    Article  ADS  Google Scholar 

  20. Y.P. Monarkha, K. Kono, J. Phys. Soc. Jpn. 74, 960 (2005)

    Article  ADS  Google Scholar 

  21. W.F. Vinen, J. Phys.: Condens. Matter 11, 9709 (1999)

    ADS  Google Scholar 

  22. M.I. Dykman, Y.G. Rubo, Phys. Rev. Lett. 78, 4813 (1997)

    Article  ADS  Google Scholar 

  23. H.J. Lauter, H. Godfrin, V.L.P. Frank, P. Leiderer, Phys. Rev. Lett. 68, 2484 (1992)

    Article  ADS  Google Scholar 

  24. D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Hoefer, P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)

    Article  ADS  Google Scholar 

  25. W. Quapp, J.M. Bofill, Molec. Phys. 117, 1541 (2019)

    Article  ADS  Google Scholar 

  26. W. Quapp, J.M. Bofill, European Phys. J. B 92, 95 (2019)

    Article  ADS  Google Scholar 

  27. W. Quapp, J.M. Bofill, European Phys. J. B 92, 193 (2019)

    Article  ADS  Google Scholar 

  28. H.J. Schulz, J. Phys. C 16, 6769 (1983)

    Article  ADS  Google Scholar 

  29. W. Quapp, J.M. Bofill, Theoret. Chem. Acc. 135, 113 (2016)

    Article  Google Scholar 

  30. W. Quapp, J.M. Bofill, J. Ribas-Ariño, Int. J. Quant. Chem. 118, e25775 (2018)

    Article  Google Scholar 

  31. J.M. Bofill, J. Ribas-Ariño, S.P. García, W. Quapp, J. Chem. Phys. 147, 152710 (2017)

    Article  ADS  Google Scholar 

  32. W. Quapp, J.M. Bofill, Int. J. Quant. Chem. 118, e25522 (2018)

    Article  Google Scholar 

  33. D.A. Gangloff, A. Bylinskii, V. Vuletić, Phys. Rev. Research 2, 013380 (2020)

    Article  ADS  Google Scholar 

  34. K.M. Yunusova, D. Konstantinov, H. Bouchiat, A.D. Chepelianskii, Phys. Rev. Lett. B 94, 195311 (2016)

    Article  Google Scholar 

  35. O.V. Zhirov, J. Lages, D.L. Shepelyansky, Euro. Phys. J. D 73, 149 (2019)

    Article  ADS  Google Scholar 

  36. M.Y. Zakharov, D. Demidov, D.L. Shepelyansky, arXiv:1901.05231 (2019)

  37. V.Y. Sivokon, Low Temp. Phys. 45, 58 (2019)

    Article  ADS  Google Scholar 

  38. H. Ikegami, H. Akimoto, K. Kono, J. Phys. Conf. Series 400, 012020 (2012)

    Article  Google Scholar 

  39. K. Shirahama, K. Kono, Phys. Rev. Lett. 74, 781 (1995)

    Article  ADS  Google Scholar 

  40. H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. Lett. 102, 046807 (2009)

    Article  ADS  Google Scholar 

  41. K. Shirahama, K. Kono, J. Low Temp. Phys. 104, 237 (1996)

    Article  ADS  Google Scholar 

  42. Y.P. Monarkha, K. Kono, Low Temp. Phys. 35, 356 (2009)

    Article  ADS  Google Scholar 

  43. O.M. Braun, B. Hu, A. Zeltser, Phys. Rev. E 62, 4235 (2000)

    Article  ADS  Google Scholar 

  44. I.D. Mikheikin, M.Y. Kuznetsov, E.V. Makhonina, V.S. Pervov, J. Mater. Synth. Process. 10, 53 (2002)

    Article  Google Scholar 

  45. O.M. Braun, Y.S. Kivshar, M. Peyrard, Phys. Rev. E 56, 6050 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  46. J.I. Frenkel, Wave Mechanics. Elementary Theory (Clarendon Press, Oxford, 1932)

  47. M. Peyrard, M.D. Kruskal, Physica D 14, 88 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  48. C. Yannouleas, U. Landman, Rep. Progr. Phys. 70, 2067 (2007)

    Article  ADS  Google Scholar 

  49. J. Odavić, P. Malik, J. Tekić, M. Pantić, M. Pavkov-Hrvojević, Commun. Nonlinear Sci. Numer. Simulat. 47, 100 (2017)

    Article  ADS  Google Scholar 

  50. J. Tekić, D. He, B. Hu, Phys. Rev. E 79, 036604 (2009)

    Article  ADS  Google Scholar 

  51. S.V. Dmitriev, L.V. Nauman, A.M. Wusatowska-Sarnek, M.D. Starostenkov, Phys. Stat. Sol. B 201, 89 (1997)

    Article  ADS  Google Scholar 

  52. M. Hirsch, W. Quapp, THEOCHEM 683, 1 (2004)

    Article  Google Scholar 

  53. G.A. Csáthy, D.C. Tsui, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 98, 066805 (2007)

    Article  ADS  Google Scholar 

  54. J. Tekić, A.E. Botha, P. Mali, Y.M. Shukrinov, Phys. Rev. E 99, 022206 (2019)

    Article  ADS  Google Scholar 

  55. M. Hirsch, W. Quapp, Chem. Phys. Lett. 395, 150 (2004)

    Article  ADS  Google Scholar 

  56. A.B. Kolton, A. Rosso, T. Giamarchi, W. Krauth, Phys. Rev. Lett. 97, 057001 (2006)

    Article  ADS  Google Scholar 

  57. S. Aubry, Physica 7D, 240 (1983)

    ADS  Google Scholar 

  58. D. Heidrich, W. Quapp, Theor. Chim. Acta 70, 89 (1986)

    Article  Google Scholar 

  59. Y.P. Monarkha, V.E. Syvokon, Low Temp. Phys. 38, 1067 (2012)

    Article  ADS  Google Scholar 

  60. P. Tong, B. Li, B. Hu, Phys. Rev. Lett. 88, 046804 (2002)

    Article  ADS  Google Scholar 

  61. P.L. Christiansen, A.V. Savin, A.V. Zolotaryuk, Phys. Rev. B 54, 12892 (1996)

    Article  ADS  Google Scholar 

  62. A.D. Klironomos, J.S. Meyer, K.A. Matveev, Europhys. Lett. 74, 679 (2006)

    Article  ADS  Google Scholar 

  63. V.E. Syvokon, S.S. Sokolov, Low Temp. Phys. 41, 858 (2015)

    Article  ADS  Google Scholar 

  64. J.B. Okaly, F. II Ndzana, R.L. Woulaché, T.C. Kofané, Eur. Phys. J. Plus 134, 598 (2019)

    Article  Google Scholar 

  65. H.J. Schulz, Phys. Rev. Lett. 71, 1864 (1993)

    Article  ADS  Google Scholar 

  66. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)

    Article  ADS  Google Scholar 

  67. R. Thorne, Phys. Today 1996, 42 (1996)

    Article  Google Scholar 

  68. J.P. Pouget, C. R. Physique 17, 332 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Quapp.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quapp, W., Lin, JY. & Bofill, J.M. The movement of a one-dimensional Wigner solid explained by a modified Frenkel-Kontorova model. Eur. Phys. J. B 93, 227 (2020). https://doi.org/10.1140/epjb/e2020-10421-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10421-x

Keywords

Navigation