Skip to main content
Log in

Abundances of neutron-capture elements in CH and carbon-enhanced metal-poor (CEMP) stars

  • Review
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

All the elements heavier than Fe are produced either by the slow (-s) or rapid (-r) neutron-capture process. The neutron density prevailing in the stellar sites is one of the major factors that determines the type of neutron-capture processes. We present the results based on the estimates of corrected value of absolute carbon abundance, [C/N] ratio, carbon isotopic ratio and [hs/ls] ratio obtained from the high-resolution spectral analysis of six stars that include both CH stars and CEMP stars. All the stars show enhancement of neutron-capture elements. Location of these objects in the A(C) vs. [Fe/H] diagram shows that they are Group I objects, with external origin of carbon and neutron-capture elements. Low values of carbon isotopic ratios estimated for these objects may also be attributed to some external sources. As the carbon isotopic ratio is a good indicator of mixing, we have used the estimates of \(^{12}\)C/\(^{13}\)C ratios to examine the occurrence of mixing in the stars. While the object HD 30443 might have experienced an extra mixing process that usually occurs after red giant branch (RGB) bump for stars with log(L/L\(_{\odot }\)) > 2.0, the remaining objects do not show any evidence of having undergone any such mixing process. The higher values of [C/N] ratios obtained for these objects also indicate that none of these objects have experienced any strong internal mixing processes. Based on the estimated abundances of carbon and the neutron-capture elements, and the abundance ratios, we have classified the objects into different groups. While the objects HE 0110−0406, HD 30443 and CD−38 2151 are found to be CEMP-s stars, HE 0308−1612 and HD 176021 show characteristic properties of CH stars with moderate enhancement of carbon. The object CD−28 1082 with enhancement of both r- and s-process elements is found to belong to the CEMP-r/s group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abate C., Pols O.R., Izzard R.G., Karakas A.I., 2015, A&A, 581, A22

    ADS  Google Scholar 

  • Aoki W., Beers T.C., Christlieb N., Norris J.E., Ryan S.G et al., 2007, ApJ, 655, 492

  • Asplund M., Grevesse N., Sauval A.J., 2009, Ann. Rev. Astron. Astrophy., 47, 481

    ADS  Google Scholar 

  • Bartkevicious A., 1996, Baltic Astron, 5, 217

    ADS  Google Scholar 

  • Beers T.C., Preston G.W., Shectman S.A., 1985, AJ, 90, 2089

    ADS  Google Scholar 

  • Beers T.C., Christlieb N., 2005, ARA&A, 43, 531

    ADS  Google Scholar 

  • Brooke J.S., Bernath P.F., Schmidt T.W., Bacskay G.B., 2013, J.Quant. Spectrosc. Radiat. Transfer, 124, 11

    ADS  Google Scholar 

  • Busso M., Gallino R., Lambert D.L., Travaglio C., Smith V.V., 2001, ApJ, 557, 802

    ADS  Google Scholar 

  • Charbonnel C., 2005, ASP Conference Series, Vol. 336

  • Christlieb N., Green P. J., Wisotzki L., Reimers D., 2001, A&A, 375, 366

    ADS  Google Scholar 

  • Dearborn D. S. P., Lattanzio J. C., Eggleton P. P., 2006, ApJ, 639, 405

    ADS  Google Scholar 

  • Eggleton P. P., Dearborn D. S. P., Lattanzio J. C., 2006, Science, 314, 1580

    ADS  Google Scholar 

  • Frebel A., Aoki W., Christlieb N., Ando H., Asplund M. et al., 2005, Nature, 434, 871

    ADS  Google Scholar 

  • Goswami A., 2005, MNRAS, 359, 531

    ADS  Google Scholar 

  • Goswami A., Karinkuzhi D., Shantikumar N.S., 2010, MNRAS, 402, 1111

    ADS  Google Scholar 

  • Goswami A., Aoki W., Karinkuzhi D., 2016, MNRAS, 455, 402

    ADS  Google Scholar 

  • Gratton R., Sneden C., Carretta E., Bragaglia A., 2000, A&A, 354, 169

    ADS  Google Scholar 

  • Hampel M., Stancliffe R.J., Lugaro M., Meyer B.S., 2016, ApJ, 831, 171

    ADS  Google Scholar 

  • Hansen C.J., Nordström B., Hansen T.T., Kennedy C.R., Placco V M. et al., 2016b, A&A, 588, A37

    ADS  Google Scholar 

  • Hansen T. T., Andersen J., Nordström B., Beers T.C., Placco V.M. et al. 2016a, A&A, 586, A160

    ADS  Google Scholar 

  • Hansen C.J., Hansen T.T., Koch A., Beers T.C., Nordström B. et al., 2019, A&A, 623, 128

    ADS  Google Scholar 

  • Iben I.Jr., Renzini A., 1984, Phys. Letters 105, 329

    Google Scholar 

  • Jonsell K., Barklem P.S., Gustafsson B., Christlieb N., Hill V. et al., 2006, A&A, 451, 651

    ADS  Google Scholar 

  • McClure R.D., 1983, ApJ, 208, 264

    ADS  Google Scholar 

  • McClure R.D., 1984, ApJ, 280, 31

    ADS  Google Scholar 

  • McClure R.D., Woodsworth W., 1990, ApJ, 352, 709

    ADS  Google Scholar 

  • McWilliiam A., 1998, AJ, 115, 1640

    ADS  Google Scholar 

  • Norris J.E., Christlieb N., Korn A.J., Eriksson K., Bessell M.S. et al., 2007, ApJ, 670, 774

    ADS  Google Scholar 

  • Placco V.M., Frebel A., Beers T. C., Stancliffe R. J., 2014, ApJ, 797, 21

    ADS  Google Scholar 

  • Prochaska J.X., McWilliam A. 2000, ApJ, 537, 57

    ADS  Google Scholar 

  • Purandardas M., Goswami A., Goswami P.P., Shejeelammal J., Masseron T., MNRAS, 2019, 486,3266

    ADS  Google Scholar 

  • Purandardas M., Goswami A., Doddamani V.H., 2019, BSRSL, 88, 207

    ADS  Google Scholar 

  • Ram R.S., Brooke James S.A., Bernath P.F., Sneden C., Lucatello S., 2014, ApJS, 211, 5

    ADS  Google Scholar 

  • Sneden C., 1973, PhD thesis, Univ. Texas

  • Sneden C., Lucatello S., Ram R.S., Brook J.S.A., Bernath P., 2014, Ap. J. Supp., 214, 26

    ADS  Google Scholar 

  • Spite M., Cayrel R., Plez B., Hill V., Spite F. et al., 2005, A&A 430, 655

    ADS  Google Scholar 

  • Spite M., Cayrel R., Hill V, Spite F., Francois P. et al., 2006, A&A 455, 291

    ADS  Google Scholar 

  • Spite, M., Caffau, E., Bonifacio, P., Spite F., Ludwig H.-G. et al. 2013, A&A, 552, 107

    ADS  Google Scholar 

  • VandenBerg D.A., Smith G.H., 1988, PASP 100, 314

    ADS  Google Scholar 

  • Yong D., Norris J. E., Bessell M. S., Christlieb N., Asplund M. et al., 2013, ApJ, 762, 26

    ADS  Google Scholar 

  • Yoon J., Beers T.C., Placco V.M., Rasmussen K.C., Carollo D. et al., 2016, ApJ, 833, 20

    ADS  Google Scholar 

  • Vanture A.D., 1992, AJ, 104, 1977

    ADS  Google Scholar 

  • Wisotzki L., Christlieb N., Bade N., Beckmann V., Köhler T, et al., 2000, A&A, 358, 77

    ADS  Google Scholar 

  • Worley C.C., Hill V.J., Sobeck J., Carretta E., 2013, A&A, 553, A47

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the staff members at IAO, CREST and VBO for their assistance and cooperation during the observations. Funding from DST SERB project No. EMR/2016/005283 is gratefully acknowledged. This work made use of the SIMBAD astronomical database, operated at CDS, Strasbourg, France, the NASA ADS, USA, and data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processes by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Purandardas.

Additional information

This article is part of the Topical Collection: Chemical elements in the Universe: Origin and evolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purandardas, M., Goswami, A. Abundances of neutron-capture elements in CH and carbon-enhanced metal-poor (CEMP) stars. J Astrophys Astron 41, 36 (2020). https://doi.org/10.1007/s12036-020-09656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-020-09656-5

Keywords

Navigation