skip to main content
research-article

Frege Systems for Quantified Boolean Logic

Published:05 April 2020Publication History
Skip Abstract Section

Abstract

We define and investigate Frege systems for quantified Boolean formulas (QBF). For these new proof systems, we develop a lower bound technique that directly lifts circuit lower bounds for a circuit class C to the QBF Frege system operating with lines from C. Such a direct transfer from circuit to proof complexity lower bounds has often been postulated for propositional systems but had not been formally established in such generality for any proof systems prior to this work.

This leads to strong lower bounds for restricted versions of QBF Frege, in particular an exponential lower bound for QBF Frege systems operating with AC0[p] circuits. In contrast, any non-trivial lower bound for propositional AC0[p]-Frege constitutes a major open problem.

Improving these lower bounds to unrestricted QBF Frege tightly corresponds to the major problems in circuit complexity and propositional proof complexity. In particular, proving a lower bound for QBF Frege systems operating with arbitrary P/poly circuits is equivalent to either showing a lower bound for P/poly or for propositional extended Frege (which operates with P/poly circuits).

We also compare our new QBF Frege systems to standard sequent calculi for QBF and establish a correspondence to intuitionistic bounded arithmetic.

References

  1. Miklós Ajtai. 1994. The complexity of the pigeonhole-principle. Combinatorica 14, 4 (1994), 417--433.Google ScholarGoogle ScholarCross RefCross Ref
  2. Sanjeev Arora and Boaz Barak. 2009. Computational Complexity—A Modern Approach. Cambridge University Press.Google ScholarGoogle Scholar
  3. Valeriy Balabanov and Jie-Hong R. Jiang. 2012. Unified QBF certification and its applications. Form. Methods Syst. Des. 41, 1 (Aug. 2012), 45--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. 2014. QBF resolution systems and their proof complexities. In Proceedings of the International Conference on Theory and Applications of Satisfiability Testing (SAT’14). 154--169.Google ScholarGoogle Scholar
  5. Paul Beame and Toniann Pitassi. 2001. Propositional proof complexity: Past, present, and future. In Current Trends in Theoretical Computer Science: Entering the 21st Century, G. Paun, G. Rozenberg, and A. Salomaa (Eds.). World Scientific Publishing, 42--70.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Eli Ben-Sasson and Avi Wigderson. 2001. Short proofs are narrow—Resolution made simple. J. ACM 48, 2 (2001), 149--169.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Marco Benedetti and Hratch Mangassarian. 2008. QBF-based formal verification: Experience and perspectives. J. Satis. Boolean Model. Comput. 5, 1–4 (2008), 133--191.Google ScholarGoogle Scholar
  8. Olaf Beyersdorff. 2009. On the correspondence between arithmetic theories and propositional proof systems -- A survey. Math. Log. Quart. 55, 2 (2009), 116--137.Google ScholarGoogle ScholarCross RefCross Ref
  9. Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde. 2019. Size, cost, and capacity: A semantic technique for hard random QBFs. Log. Methods Comput. Sci. 15, 1 (2019).Google ScholarGoogle Scholar
  10. Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew. 2016a. Lower bounds: From circuits to QBF proof systems. In Proceedings of the ACM Conference on Innovations in Theoretical Computer Science (ITCS’16). ACM, 249--260.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. 2014. On unification of QBF resolution-based calculi. In Proceedings of the Symposium on Mathematical Foundations of Computer Science (MFCS’14). Springer, 81--93.Google ScholarGoogle ScholarCross RefCross Ref
  12. Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. 2015. Proof complexity of resolution-based QBF calculi. In Proceedings of the 32nd International Symposium on Theoretical Aspects of Computer Science (STACS’15). 76--89.Google ScholarGoogle Scholar
  13. Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. 2016b. Extension variables in QBF resolution. In Beyond NP, Papers from the 2016 AAAI Workshop. AAAI Press.Google ScholarGoogle Scholar
  14. Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. 2017a. Feasible interpolation for QBF resolution calculi. Log. Methods Comput. Sci. 13 (2017).Google ScholarGoogle Scholar
  15. Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. 2018. Understanding cutting planes for QBFs. Inf. Comput. 262 (2018), 141--161.Google ScholarGoogle ScholarCross RefCross Ref
  16. Olaf Beyersdorff, Luke Hinde, and Ján Pich. 2017b. Reasons for hardness in QBF proof systems. In Proceedings of the 37th IARCS Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’17). 14:1--14:15.Google ScholarGoogle Scholar
  17. Olaf Beyersdorff and Oliver Kullmann. 2014. Unified characterisations of resolution hardness measures. In Proceedings of the International Conference on Theory and Applications of Satisfiability Testing (SAT’14). Springer, 170--187.Google ScholarGoogle ScholarCross RefCross Ref
  18. Olaf Beyersdorff and Ján Pich. 2016. Understanding Gentzen and Frege systems for QBF. In Proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS’16).Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Archie Blake. 1937. Canonical Expressions in Boolean Algebra. Ph.D. Dissertation. University of Chicago.Google ScholarGoogle Scholar
  20. Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann Pitassi. 2004. Non-automatizability of bounded-depth Frege proofs. Computat. Complex. 13, 1--2 (2004), 47--68.Google ScholarGoogle Scholar
  21. Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. 2000. On interpolation and automatization for Frege systems. SIAM J. Comput. 29, 6 (2000), 1939--1967.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ravi B. Boppana and Michael Sipser. 1990. Handbook of Theoretical Computer Science (Vol. A). The MIT Press, Cambridge, MA, Chapter: The Complexity of Finite Functions, 757--804.Google ScholarGoogle Scholar
  23. Samuel R. Buss. 1986a. Bounded Arithmetic. Bibliopolis, Napoli.Google ScholarGoogle Scholar
  24. Samuel R. Buss. 1986b. The polynomial hierarchy and intuitionistic bounded arithmetic. In Proceedings of the Structure in Complexity Theory Conference. 77--103.Google ScholarGoogle ScholarCross RefCross Ref
  25. Samuel R. Buss. 2012. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic 163, 7 (2012), 906--917.Google ScholarGoogle ScholarCross RefCross Ref
  26. Samuel R. Buss and Peter Clote. 1996. Cutting planes, connectivity, and threshold logic. Arch. Math. Log. 35, 1 (1996), 33--62.Google ScholarGoogle ScholarCross RefCross Ref
  27. Samuel R. Buss and Grigori Mints. 1999. The complexity of the disjunction and existential properties in intuitionistic logic. Ann. Pure Appl. Log. 99, 1--3 (1999), 93--104.Google ScholarGoogle ScholarCross RefCross Ref
  28. Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. 1996. Using the Groebner basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th ACM Symposium on Theory of Computing. 174--183.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stephen Cook and Tsuyoshi Morioka. 2005. Quantified propositional calculus and a second-order theory for NC1 . Arch. Math. Logic 44, 6 (2005), 711--749. DOI:https://doi.org/10.1007/s00153-005-0282-2.Google ScholarGoogle ScholarCross RefCross Ref
  30. Stephen A. Cook. 1975. Feasibly constructive proofs and the propositional calculus. In Proceedings of the 7th ACM Symposium on Theory of Computing. 83--97.Google ScholarGoogle Scholar
  31. Stephen A. Cook and Phuong Nguyen. 2010. Logical Foundations of Proof Complexity. Cambridge University Press.Google ScholarGoogle Scholar
  32. Stephen A. Cook and Robert A. Reckhow. 1979. The relative efficiency of propositional proof systems. J. Symb. Log. 6 (1979), 169--184.Google ScholarGoogle Scholar
  33. Stephen A. Cook and Neil Thapen. 2006. The strength of replacement in weak arithmetic. ACM Trans. Comput. Log. 7, 4 (2006), 749--764.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stephen A. Cook and Alasdair Urquhart. 1993. Functional interpretations of feasibly constructive arithmetic. Ann. Pure Appl. Log. 63, 2 (1993), 103--200.Google ScholarGoogle ScholarCross RefCross Ref
  35. William Cook, Collette R. Coullard, and György Turán. 1987. On the complexity of cutting-plane proofs. Disc. Appl. Math. 18, 1 (1987), 25--38.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Martin Dowd. 1985. Model-Theoretic Aspects of P#NP. (1985). Unpublished manuscript. https://www.researchgate.net/publication/337090251_Model_Theoretic_Aspects_of_P_N_P.Google ScholarGoogle Scholar
  37. Uwe Egly. 2012. On sequent systems and resolution for QBFs. In Proceedings of the Conference on Theory and Applications of Satisfiability Testing (SAT’12). 100--113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. 2017. Conformant planning as a case study of incremental QBF solving. Ann. Math. Artif. Intell. 80, 1 (2017), 21--45. DOI:https://doi.org/10.1007/s10472-016-9501-2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Gerhard Gentzen. 1935. Untersuchungen über das logische Schließen. Math. Zeit. 39 (1935), 68--131.Google ScholarGoogle Scholar
  40. Kaveh Ghasemloo and Ján Pich. 2013. A note on natural proofs and intuitionism. (2013). Retrieved from karlin.mff.cuni.cz/∼pich/natcons.pdf.Google ScholarGoogle Scholar
  41. Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. 2011. A uniform approach for generating proofs and strategies for both true and false QBF formulas. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’11). 546--553.Google ScholarGoogle Scholar
  42. Amin Haken. 1985. The intractability of resolution. Theoret. Comput. Sci. 39 (1985), 297--308.Google ScholarGoogle ScholarCross RefCross Ref
  43. Johan Håstad. 1986. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th Symposium on the Theory of Computing (STOC’86). ACM Press, 6--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Marijn J. H. Heule, Martina Seidl, and Armin Biere. 2017. Solution validation and extraction for QBF preprocessing. J. Autom. Reason. 58, 1 (2017), 97--125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Pavel Hrubeš. 2009. On lengths of proofs in non-classical logics. Ann. Pure Appl. Log. 157, 2--3 (2009), 194--205.Google ScholarGoogle ScholarCross RefCross Ref
  46. Mikolás Janota and Joao Marques-Silva. 2015. Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577 (2015), 25--42.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Emil Jeřábek. 2005. Weak Pigeonhole Principle, and Randomized Computation. Ph.D. Dissertation. Faculty of Mathematics and Physics, Charles University, Prague.Google ScholarGoogle Scholar
  48. Emil Jeřábek. 2009. Substitution Frege and extended Frege proof systems in non-classical logics. Ann. Pure Appl. Log. 159, 1--2 (2009), 1--48.Google ScholarGoogle ScholarCross RefCross Ref
  49. Emil Jerábek and Phuong Nguyen. 2011. Simulating non-prenex cuts in quantified propositional calculus. Math. Log. Q. 57, 5 (2011), 524--532.Google ScholarGoogle ScholarCross RefCross Ref
  50. Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. 1995. Resolution for quantified Boolean formulas. Inf. Comput. 117, 1 (1995), 12--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Jan Krajícek and Gaisi Takeuti. 1992. On induction-free provability. Ann. Math. Artif. Intell. 6, 1--3 (1992), 107--125.Google ScholarGoogle ScholarCross RefCross Ref
  52. Jan Krajíček. 1995. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and Its Applications, Vol. 60. Cambridge University Press, Cambridge, UK.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Jan Krajíček. 1997. Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. J. Symb. Log. 62, 2 (1997), 457--486.Google ScholarGoogle ScholarCross RefCross Ref
  54. Jan Krajíček and Pavel Pudlák. 1989. Propositional proof systems, the consistency of first order theories and the complexity of computations. J. Symb. Log. 54, 3 (1989), 1063--1079.Google ScholarGoogle ScholarCross RefCross Ref
  55. Jan Krajíček and Pavel Pudlák. 1990. Quantified propositional calculi and fragments of bounded arithmetic. Zeit. Math. Log. Grund. Math. 36 (1990), 29--46.Google ScholarGoogle ScholarCross RefCross Ref
  56. Jan Krajíček and Pavel Pudlák. 1998. Some consequences of cryptographical conjectures S12 for and EF. Inf. Computat. 140, 1 (1998), 82--94.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Jan Krajíček, Pavel Pudlák, and Alan Woods. 1995. Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. Rand. Struct. Algor. 7, 1 (1995), 15--39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. David E. Muller and Franco P. Preparata. 1975. Bounds to complexities of networks for sorting and for switching. J. ACM 22, 2 (1975), 195--201.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Rohit Parikh. 1971. Existence and feasibility in arithmetic. J. Symb. Log. 36, 3 (1971), 494--508.Google ScholarGoogle ScholarCross RefCross Ref
  60. Toniann Pitassi, Paul Beame, and Russell Impagliazzo. 1993. Exponential lower bounds for the pigeonhole principle. Computat. Complex. 3 (1993), 97--140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Pavel Pudlák. 1997. Lower bounds for resolution and cutting planes proofs and monotone computations. J. Symb. Log. 62, 3 (1997), 981--998.Google ScholarGoogle ScholarCross RefCross Ref
  62. Alexander A. Razborov. 1987. Lower bounds for the size of circuits of bounded depth with basis {8, ⊕}. Math. Notes Acad. Sci. USSR 41, 4 (1987), 333--338.Google ScholarGoogle ScholarCross RefCross Ref
  63. Jussi Rintanen. 2007. Asymptotically optimal encodings of conformant planning in QBF. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’07). AAAI Press, 1045--1050.Google ScholarGoogle Scholar
  64. Ronald L. Rivest. 1987. Learning decision lists. Mach. Learn. 2, 3 (1987), 229--246.Google ScholarGoogle ScholarCross RefCross Ref
  65. John Alan Robinson. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12, 1 (1965), 23--41.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Nathan Segerlind. 2007. The complexity of propositional proofs. Bull. Symb. Log. 13, 4 (2007), 417--481.Google ScholarGoogle ScholarCross RefCross Ref
  67. Roman Smolensky. 1987. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the 19th ACM Symposium on the Theory of Computing (STOC’87). 77--82.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Allen Van Gelder. 2012. Contributions to the theory of practical quantified Boolean formula solving. In Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP’12). 647--663.Google ScholarGoogle ScholarCross RefCross Ref
  69. Heribert Vollmer. 1999. Introduction to Circuit Complexity—A Uniform Approach. Springer Verlag, Berlin.Google ScholarGoogle Scholar

Index Terms

  1. Frege Systems for Quantified Boolean Logic

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format