skip to main content
research-article
Public Access

Discriminative Power of Typing Features on Desktops, Tablets, and Phones for User Identification

Published:05 February 2020Publication History
Skip Abstract Section

Abstract

Research in Keystroke-Dynamics (KD) has customarily focused on temporal features without considering context to generate user templates that are used in authentication. Additionally, work on KD in hand-held devices such as smart-phones and tablets have shown that these features alone do not perform satisfactorily for authentication. In this work, we analyze the discriminatory power of the most-used conventional features found in the literature, propose a set of context-sensitive or word-specific features, and analyze the discriminatory power of proposed features using their classification results. To perform these tasks, we use the keystroke data consisting of over 650K keystrokes, collected from 20 unique users during different activities on desktops, tablets, and phones, over a span of two months. On an average, each user made 12.5K, 9K, and 10K keystrokes on desktop, tablet, and phone, respectively.

We find that the conventional features are not highly discriminatory on desktops and are only marginally better on hand-held devices for user identification. By using information of the context, a subset (derived after analysis) of our proposed word-specific features offers superior discrimination among users on all devices. We find that a majority of the classifiers, built using these features, perform user identification well with accuracies in the range of 90% to 97%, average precision and recall values of 0.914 and 0.901, respectively, on balanced test samples in 10-fold cross validation. We also find that proposed features work best on hand-held devices. This work calls for a shift from using conventional KD features to a set of context-sensitive or word-specific KD features that take advantage of known information such as context.

References

  1. Ahmed A. Ahmed and Issa Traore. 2014. Biometric recognition based on free-text keystroke dynamics. IEEE Trans. Cyber. 44, 4 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  2. Kamran Ali, Alex X. Liu, Wei Wang, and Muhammad Shahzad. 2015. Keystroke recognition using Wi-Fi signals. In Proceedings of the 21st International Conference on Mobile Computing and Networking (MobiCom’15). ACM, New York, NY, 90--102. DOI:https://doi.org/10.1145/2789168.2790109Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Md Liakat Ali, John V. Monaco, Charles C. Tappert, and Meikang Qiu. 2017. Keystroke biometric systems for user authentication. J. Sig. Proc. Syst. 86, 2 (1 Mar. 2017), 175--190. DOI:https://doi.org/10.1007/s11265-016-1114-9Google ScholarGoogle Scholar
  4. Orcan Alpar. 2017. Frequency spectrograms for biometric keystroke authentication using neural network based classifier. Knowledge-Based Systems 116 (2017), 163--171. DOI:https://doi.org/10.1016/j.knosys.2016.11.006Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Arwa Alsultan, Kevin Warwick, and Hong Wei. 2017. Non-conventional keystroke dynamics for user authentication. Pattern Recog. Lett. 89, C (2017).Google ScholarGoogle Scholar
  6. Dmitri Asonov and Rakesh Agrawal. 2004. Keyboard acoustic emanations. In Proceedings of the IEEE Symposium on Security and Privacy (S8P’04). 3--11. DOI:https://doi.org/10.1109/SECPRI.2004.1301311Google ScholarGoogle ScholarCross RefCross Ref
  7. Gabriel L. F. B. G. Azevedo, George D. C. Cavalcanti, and Edson C. B. Carvalho Filho. 2007. An approach to feature selection for keystroke dynamics systems based on PSO and feature weighting. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’07). IEEE, 3577--3584.Google ScholarGoogle Scholar
  8. Kiran Balagani, Vir Phoha, Asok Ray, and Shashi Phoha. 2011. On the discriminability of keystroke feature vectors used in fixed text keystroke authentication. Pattern Recog. Lett. 32, 7 (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jorge Blasco, Thomas M. Chen, Juan Tapiador, and Pedro Peris-Lopez. 2016. A survey of wearable biometric recognition systems. ACM Comput. Surv. 49, 3, Article 43 (Sept. 2016), 35 pages. DOI:https://doi.org/10.1145/2968215Google ScholarGoogle Scholar
  10. David Guy Brizan, Adam Goodkind, Patrick Koch, Kiran Balagani, Vir V. Phoha, and Andrew Rosenberg. 2015. Utilizing linguistically enhanced keystroke dynamics to predict typist cognition and demographics. Int. J. Hum.-Comput. Stud. 82 (2015), 57--68. DOI:https://doi.org/10.1016/j.ijhcs.2015.04.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE: Synthetic minority over-sampling technique. J. Artif. Int. Res. 16, 1 (June 2002), 321--357. Retrieved from: http://dl.acm.org/citation.cfm?id=1622407.1622416.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth. 2018. EyeTell: Video-assisted touchscreen keystroke inference from eye movements. In Proceedings of the IEEE Symposium on Security and Privacy (SP’18). 144--160. DOI:https://doi.org/10.1109/SP.2018.00010Google ScholarGoogle Scholar
  13. F. Ciuffo and G. M. Weiss. 2017. Smartwatch-based transcription biometrics. In Proceedings of the IEEE 8th Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON’17). 145--149. DOI:https://doi.org/10.1109/UEMCON.2017.8249014Google ScholarGoogle Scholar
  14. N. L. Clarke and S. M. Furnell. 2006. Authenticating mobile phone users using keystroke analysis. Int. J. Inf. Secur. 6, 1 (2006).Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Mark Davies. 2010. Corpus of contemporary American English. Retrieved from: https://www.english-corpora.org/coca/.Google ScholarGoogle Scholar
  16. H. Davoudi and E. Kabir. 2009. A new distance measure for free text keystroke authentication. In Proceedings of the 14th International CSI Computer Conference. 570--575. DOI:https://doi.org/10.1109/CSICC.2009.5349640Google ScholarGoogle Scholar
  17. K. Delac and M. Grgic. 2004. A survey of biometric recognition methods. In Proceedings of the 46th International Symposium on Electronics in Marine (Elmar’04). 184--193.Google ScholarGoogle Scholar
  18. Song Fang, Ian Markwood, Yao Liu, Shangqing Zhao, Zhuo Lu, and Haojin Zhu. 2018. No training hurdles: Fast training-agnostic attacks to infer your typing. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. ACM, 1747--1760.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Adam Goodkind, David Guy Brizan, and Andrew Rosenberg. 2017. Utilizing overt and latent linguistic structure to improve keystroke-based authentication. Image Vis. Comput. 58 (2017), 230--238. DOI:https://doi.org/10.1016/j.imavis.2016.06.003Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Daniele Gunetti and Claudia Picardi. 2005. Keystroke analysis of free text. ACM Trans. Inf. Syst. Secur. 8, 3 (Aug. 2005), 312--347. DOI:https://doi.org/10.1145/1085126.1085129Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Daniele Gunetti, Claudia Picardi, and Giancarlo Ruffo. 2005. Dealing with different languages and old profiles in keystroke analysis of free text. In AI*IA 2005: Advances in Artificial Intelligence. Springer Berlin Heidelberg, 347–358.Google ScholarGoogle Scholar
  22. Jiacang Ho and Dae-Ki Kang. 2017. Mini-batch bagging and attribute ranking for accurate user authentication in keystroke dynamics. Pattern Recog. 70 (2017), 139--151. DOI:https://doi.org/10.1016/j.patcog.2017.05.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Huang, D. Hou, and S. Schuckers. 2017. A practical evaluation of free-text keystroke dynamics. In Proceedings of the IEEE International Conference on Identity, Security and Behavior Analysis (ISBA’17). 1--8. DOI:https://doi.org/10.1109/ISBA.2017.7947695Google ScholarGoogle Scholar
  24. Jiaju Huang, Daqing Hou, Stephanie Schuckers, and Shambhu Upadhyaya. 2016. Effects of text filtering on authentication performance of keystroke biometrics. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS’16).Google ScholarGoogle ScholarCross RefCross Ref
  25. Rajkumar Janakiraman and Terence Sim. 2007. Keystroke dynamics in a general setting. In Advances in Biometrics, Seong-Whan Lee and Stan Z. Li (Eds.). Springer Berlin, 584--593.Google ScholarGoogle Scholar
  26. K. Jin, S. Fang, C. Peng, Z. Teng, X. Mao, L. Zhang, and X. Li. 2017. ViViSnoop: Someone is snooping your typing without seeing it! In Proceedings of the IEEE Conference on Communications and Network Security (CNS’17). 1--9. DOI:https://doi.org/10.1109/CNS.2017.8228624Google ScholarGoogle Scholar
  27. Rick Joyce and Gopal Gupta. 1990. Identity authentication based on keystroke latencies. Commun. ACM 33, 2 (Feb. 1990), 168--176. DOI:https://doi.org/10.1145/75577.75582Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Hassan Khan, Urs Hengartner, and Daniel Vogel. 2018. Augmented reality-based mimicry attacks on behaviour-based smartphone authentication. In Proceedings of the 16th International Conference on Mobile Systems, Applications, and Services (MobiSys’18). ACM, New York, NY, 41--53. DOI:https://doi.org/10.1145/3210240.3210317Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. S. Lee, T. S. Lau, W. K. Lai, Y. C. King, and L. L. Lim. 2017. User identification of numerical keypad typing patterns with subtractive clustering fuzzy inference. In Proceedings of the IEEE 15th Student Conference on Research and Development (SCOReD’17). 83--88. DOI:https://doi.org/10.1109/SCORED.2017.8305416Google ScholarGoogle Scholar
  30. Jian Liu, Yan Wang, Gorkem Kar, Yingying Chen, Jie Yang, and Marco Gruteser. 2015. Snooping Keystrokes with Mm-level audio ranging on a single phone. In Proceedings of the 21st International Conference on Mobile Computing and Networking (MobiCom’15). ACM, New York, NY, 142--154. DOI:https://doi.org/10.1145/2789168.2790122Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. L. Lu, J. Yu, Y. Chen, Y. Zhu, X. Xu, G. Xue, and M. Li. 2019. KeyLiSterber: Inferring keystrokes on QWERTY keyboard of touch screen through acoustic signals. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’19). 775--783. DOI:https://doi.org/10.1109/INFOCOM.2019.8737591Google ScholarGoogle Scholar
  32. A. Maiti, M. Jadliwala, J. He, and I. Bilogrevic. 2018. Side-channel inference attacks on mobile keypads using smartwatches. IEEE Trans. Mob. Comput. 17, 9 (Sept. 2018), 2180--2194. DOI:https://doi.org/10.1109/TMC.2018.2794984Google ScholarGoogle ScholarCross RefCross Ref
  33. Merylin Monaro, Chiara Galante, Riccardo Spolaor, Qian Qian Li, Luciano Gamberini, Mauro Conti, and Giuseppe Sartori. 2018. Covert lie detection using keyboard dynamics. Sci. Rep. 8, 1 (2018), 1976. DOI:https://doi.org/10.1038/s41598-018-20462-6Google ScholarGoogle Scholar
  34. S. Mondal and P. Bours. 2017. Person identification by keystroke dynamics using pairwise user coupling. IEEE Trans. Inf. Forens. Secur. 12, 6 (June 2017), 1319--1329. DOI:https://doi.org/10.1109/TIFS.2017.2658539Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Soumik Mondal and Patrick Bours. 2017. A study on continuous authentication using a combination of keystroke and mouse biometrics. Neurocomputing 230 (2017), 1--22. DOI:https://doi.org/10.1016/j.neucom.2016.11.031Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Fabian Monrose and Aviel Rubin. 1997. Authentication via keystroke dynamics. In Proceedings of the 4th ACM Conference on Computer and Communications Security (CCS’97). ACM, New York, NY, 48--56. DOI:https://doi.org/10.1145/266420.266434Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Tuan Nguyen and Jonathan Voris. 2017. Touchscreen biometrics across multiple devices. In Proceedings of the USENIX Symposium on Usable Privacy and Security (SOUPS’17).Google ScholarGoogle Scholar
  38. M. Obaidat and Balqies Sadoun. 1997. Verification of computer users using keystroke dynamics. IEEE Trans. Syst. Man Cyber. Part B: Cyber. 27, 2 (1997)Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Avar Pentel. 2019. Predicting user age by keystroke dynamics. In Artificial Intelligence and Algorithms in Intelligent Systems, Radek Silhavy (Ed.). Springer International Publishing, Cham, 336--343.Google ScholarGoogle Scholar
  40. Paulo Henrique Pisani and Ana Carolina Lorena. 2013. A systematic review on keystroke dynamics. J. Braz. Comput. Soc. 19, 4 (1 Nov. 2013), 573--587. DOI:https://doi.org/10.1007/s13173-013-0117-7Google ScholarGoogle ScholarCross RefCross Ref
  41. Oxford University Press. 2011. The Oxford English corpus: Facts about the language. OxfordDictionaries.com. Retrieved from https://web.archive.org/web/20111226085859/ Retrieved from http://oxforddictionaries.com/words/the-oec-facts-about-the-language.Google ScholarGoogle Scholar
  42. K. A. Rahman, K. S. Balagani, and V. V. Phoha. 2013. Snoop-forge-replay attacks on continuous verification with keystrokes. IEEE Trans. Inf. Forens. Sec. 8, 3 (Mar. 2013), 528--541. DOI:https://doi.org/10.1109/TIFS.2013.2244091Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Kenneth Revett, Sérgio Tenreiro de Magalhães, and Henrique M. D. Santos. 2005. Enhancing login security through the use of keystroke input dynamics. In Advances in Biometrics, David Zhang and Anil K. Jain (Eds.). Springer Berlin, 661--667.Google ScholarGoogle Scholar
  44. Seong seob Hwang, Sungzoon Cho, and Sunghoon Park. 2009. Keystroke dynamics-based authentication for mobile devices. Comput. Sec. 28, 1 (2009), 85--93. DOI:https://doi.org/10.1016/j.cose.2008.10.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Abdul Serwadda and Vir V. Phoha. 2013. Examining a large keystroke biometrics dataset for statistical-attack openings. ACM Trans. Inf. Syst. Sec. 16, 2, Article 8 (Sept. 2013), 30 pages. DOI:https://doi.org/10.1145/2516960Google ScholarGoogle Scholar
  46. Yong Sheng, Vir Phoha, and S. M. Rovnyak. 2005. A parallel decision tree-based method for user authentication based on keystroke patterns. IEEE Trans. Syst. Man Cyber. Part B: Cyber. 35 (9 2005), 826--833. DOI:https://doi.org/10.1109/TSMCB.2005.846648Google ScholarGoogle Scholar
  47. D. Shukla and V. V. Phoha. 2019. Stealing passwords by observing hands movement. IEEE Trans. Inf. Forens. Sec. 14, 12 (Dec. 2019), 3086--3101. DOI:https://doi.org/10.1109/TIFS.2019.2911171Google ScholarGoogle ScholarCross RefCross Ref
  48. T. Sim and R. Janakiraman. 2007. Are digraphs good for free-text keystroke dynamics? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1--6. DOI:https://doi.org/10.1109/CVPR.2007.383393Google ScholarGoogle Scholar
  49. D. Stefan and D. Yao. 2010. Keystroke-dynamics authentication against synthetic forgeries. In Proceedings of the 6th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom’10). 1--8. DOI:https://doi.org/10.4108/icst.collaboratecom.2010.16Google ScholarGoogle Scholar
  50. A. E. Sulavko, A. V. Eremenko, and A. A. Fedotov. 2017. Users’ identification through keystroke dynamics based on vibration parameters and keyboard pressure. In Proceedings of the Dynamics of Systems, Mechanisms and Machines Conference (Dynamics’17). 1--7. DOI:https://doi.org/10.1109/Dynamics.2017.8239514Google ScholarGoogle Scholar
  51. A. Sulong, Wahyudi, and M. U. Siddiqi. 2009. Intelligent keystroke pressure-based typing biometrics authentication system using radial basis function network. In Proceedings of the 5th International Colloquium on Signal Processing and Its Applications. 151--155. DOI:https://doi.org/10.1109/CSPA.2009.5069206Google ScholarGoogle Scholar
  52. Yan Sun, H. Ceker, and S. Upadhyaya. 2017. Anatomy of secondary features in keystroke dynamics —achieving more with less. In Proceedings of the IEEE International Conference on Identity, Security and Behavior Analysis (ISBA’17). 1--6. DOI:https://doi.org/10.1109/ISBA.2017.7947691Google ScholarGoogle Scholar
  53. Pin Shen Teh, Andrew Beng Jin Teoh, and Shigang Yue. 2013. A survey of keystroke dynamics biometrics. Sci. World J. (Sept. 2013). DOI:https://doi.org/10.1155/2013/408280Google ScholarGoogle Scholar
  54. Ioannis Tsimperidis, Avi Arampatzis, and Alexandros Karakos. 2018. Keystroke dynamics features for gender recognition. Dig. Investig. 24 (2018), 4--10. DOI:https://doi.org/10.1016/j.diin.2018.01.018Google ScholarGoogle ScholarCross RefCross Ref
  55. Mindaugas Ulinskas, Robertas Damaševičius, Rytis Maskeliūnas, and Marcin Woźniak. 2018. Recognition of human daytime fatigue using keystroke data. Procedia Comput. Sci. 130 (2018), 947--952. DOI:https://doi.org/10.1016/j.procs.2018.04.094Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Umphress and G. Williams. 1985. Identity verification through keyboard characteristics. Int. J. Man-Mach. Stud. 23, 3 (1985), 263–273.Google ScholarGoogle ScholarCross RefCross Ref
  57. Changsheng Wu, Wenbo Ding, Ruiyuan Liu, Jiyu Wang, Aurelia C. Wang, Jie Wang, Shengming Li, Yunlong Zi, and Zhong Lin Wang. 2018. Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array. Mater. Today 21, 3 (2018), 216--222. DOI:https://doi.org/10.1016/j.mattod.2018.01.006Google ScholarGoogle ScholarCross RefCross Ref
  58. Tong Zhu, Qiang Ma, Shanfeng Zhang, and Yunhao Liu. 2014. Context-free attacks using keyboard acoustic emanations. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS’14). ACM, New York, NY, 453--464. DOI:https://doi.org/10.1145/2660267.2660296Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. John Zulueta, Piscitello Andrea, Mladen Rasic, Rebecca Easter, Pallavi Babu, Scott Langenecker, Melvin McInnis, Olusola Ajilore, Peter Nelson, Kelly Ryan, and Alex Leow. 2017. Predicting mood disturbance severity in bipolar subjects with mobile phone keystroke dynamics and metadata. Bio. Psych. 81, 10 (May 2017).Google ScholarGoogle Scholar

Index Terms

  1. Discriminative Power of Typing Features on Desktops, Tablets, and Phones for User Identification

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Privacy and Security
          ACM Transactions on Privacy and Security  Volume 23, Issue 1
          February 2020
          209 pages
          ISSN:2471-2566
          EISSN:2471-2574
          DOI:10.1145/3382042
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 5 February 2020
          • Accepted: 1 December 2019
          • Revised: 1 September 2019
          • Received: 1 July 2018
          Published in tops Volume 23, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format