skip to main content
research-article

Efficient Signal Reconstruction for a Broad Range of Applications

Published:05 November 2019Publication History
Skip Abstract Section

Abstract

The signal reconstruction problem (SRP) is an important optimization problem where the objective is to identify a solution to an under-determined system of linear equations AX = b that is closest to a given prior. It has a substantial number of applications in diverse areas including network traffic engineering, medical image reconstruction, acoustics, astronomy and many more. Most common approaches for solving SRP do not scale to large problem sizes. In this paper, we propose a dual formulation of this problem and show how adapting database techniques developed for scalable similarity joins provides a significant speedup when the A matrix is sparse and binary. Extensive experiments on real-world and synthetic data show that our approach produces a significant speedup of up to 20x over competing approaches.

References

  1. A. Asudeh, A. Nazi, J. Augustine, S. Thirumuruganathan, N. Zhang, G. Das, and D. Srivastava. Leveraging similarity joins for signal reconstruction. PVLDB, 11(10), 2018.Google ScholarGoogle Scholar
  2. Y. Awatsuji, Y. Wang, P. Xia, and O. Matoba. 3d image reconstruction of transparent gas flow by parallel phase-shifting digital holography. In WIO, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  3. K. Beyer, R. Gemulla, P. J. Haas, B. Reinwald, and Y. Sismanis. Distinct-value synopses for multiset operations. Communications of the ACM, 52(10):87--95, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Z. Broder. On the resemblance and containment of documents. In SEQUENCES, pages 21--29. IEEE, 1997.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Cao, D. Davis, S. Vander Wiel, and B. Yu. Time-varying network tomography: router link data. Journal of the American statistical association, 95(452):1063--1075, 2000.Google ScholarGoogle Scholar
  6. B. Chandrasekaran. Survey of network traffic models. Waschington University in St. Louis CSE, 567, 2009.Google ScholarGoogle Scholar
  7. S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data cleaning. In ICDE. IEEE, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. E. Cohen and H. Kaplan. Tighter estimation using bottom k sketches. PVLDB, 1(1):213--224, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. V. F. Farias, S. Jagabathula, and D. Shah. A nonparametric approach to modeling choice with limited data. Management science, 59(2):305--322, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Gong. Identifying p2p users using traffic analysis. 2005. www.symantec.com/connect/articles/ identifying-p2p-users-using-traffic-analysis.Google ScholarGoogle Scholar
  11. P. Grangeat and J.-L. Amans. Three-dimensional image reconstruction in radiology and nuclear medicine, volume 4. Springer Science & Business Media, 2013.Google ScholarGoogle Scholar
  12. M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava. Hashed samples: selectivity estimators for set similarity selection queries. PVLDB, 1(1):201--212, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. C. Hansen. Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. SIAM, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. W. T. Hrinivich, D. A. Hoover, K. Surry, C. Edirisinghe, D. D'Souza, A. Fenster, and E. Wong. Ultrasound guided high-dose-rate prostate brachytherapy: Live needle segmentation and 3d image reconstruction using the sagittal transducer. Brachytherapy, 15:S195, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  15. S. V. Kalinin, E. Strelcov, A. Belianinov, S. Somnath, R. K. Vasudevan, E. J. Lingerfelt, R. K. Archibald, C. Chen, R. Proksch, N. Laanait, et al. Big, deep, and smart data in scanning probe microscopy, 2016.Google ScholarGoogle Scholar
  16. P. Kuchment and F. Terzioglu. 3d image reconstruction from compton camera data. arXiv:1604.03805, 2016.Google ScholarGoogle Scholar
  17. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In SIGKDD, pages 177--187. ACM, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Z. Liu, Z. Shi, M. Jiang, J. Zhang, L. Chen, T. Zhang, and G. Liu. Using MC algorithm to implement 3d image reconstruction for yunnan weather radar data. Journal of Computer and Communications, 5(05), 2017.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Massey, J. Rhodes, R. Ellis, N. Scoville, A. Leauthaud, A. Finoguenov, P. Capak, D. Bacon, H. Aussel, J.-P. Kneib, et al. Dark matter maps reveal cosmic scaffolding. arXiv preprint astro-ph/0701594, 2007.Google ScholarGoogle Scholar
  20. D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 2009.Google ScholarGoogle Scholar
  21. R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge philosophical society, volume 51, pages 406--413, 1955.Google ScholarGoogle ScholarCross RefCross Ref
  22. C. R. Vogel. Computational methods for inverse problems. SIAM, 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Y. Wiaux, L. Jacques, G. Puy, A. M. Scaife, and P. Vandergheynst. Compressed sensing imaging techniques for radio interferometry. Monthly Notices of the Royal Astronomical Society, 395(3):1733--1742, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  24. G. L. Zeng. 3d image reconstruction. In Medical Image Reconstruction, pages 87--123. Springer, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  25. Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast accurate computation of large-scale ip traffic matrices from link loads. In SIGMETRICS, volume 31, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An information-theoretic approach to traffic matrix estimation. In SIGCOMM, pages 301--312. ACM, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Zhu, Z. Li, H. Zhu, M. Li, and Q. Zhang. A compressive sensing approach to urban traffic estimation with probe vehicles. IEEE Transactions on Mobile Computing, 12(11):2289--2302, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader