Skip to main content
Log in

The Role of the Pyroxenite Mantle in the Magma Genesis of the Oligocene Basalts from the Northern Part of East Sikhote Alin

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

Identification of magma sources and their role in the origination of basaltic magmas still remains one of the fundamental petrological problems. Based on new comprehensive isotope–geochemical and mineralogical data, the contribution of a pyroxenite mantle source was recognized for the first time for Oligocene basalts in the northern part of the East Sikhote Alin volcanic belt. The most important indicators of this source are significant variations in the first-row transition elements ratios (Zn/Fe = 11–17 and Zn/Mn = 6–10), Cr/Ni (1.8–6) and the Ni concentration (2000–3600 ppm) in olivine. The behavior of LIL elements suggests the presence of amphibole in a pyroxenite protolith. The obtained data can be used for the correct reconstruction of the magma generation and geodynamic environment in this territory in the Late Cenozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. M. A. Akhmet’ev and L. P. Batyleva, “Neogene–Quaternary basaltic andesites of East Sikhote Alin,” in Petrology of the Neogene–Quaternary Basalts of the Northwestern Sector of the Pacific Mobile Belt (Nedra, Moscow, 1971), pp. 13–47 [in Russian].

    Google Scholar 

  2. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  3. M. Yu. Davydova, Yu. A. Martynov, and A. B. Perepelov, “Evolution of the isotopic-geochemical composition of rocks of Uksichan Volcano, Sredinnyi Range, Kamchatka, and its relations to the tectonic restyling of Kamchatka in the Neogene,” Petrology 27 (3), 265–290 (2019).

  4. W. A. Deer, R. A. Howie, and J. Zussman, An Introduction to the Rock-Forming Minerals (Longmans, London, 1962), Vol. 2 [in Russian].

    Google Scholar 

  5. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natalin, Tectonics of Lithospheric Plates of the USSR Territory (Nedra, Moscow, 1990), Vol. 2 [in Russian].

    Google Scholar 

  6. E. N. Lishnevskii, “Main tectonic features and deep structure of the continental part of the USSR Far East: gravity data,” in Structure and Evolution of the Earth’s Crust on the Soviet Far East (Nauka, Moscow, 1969), pp. 21–31 [in Russian].

    Google Scholar 

  7. D. A. Lopatina, “Palynological assemblages and macrofloras from Eocene–Miocene deposits of the Tatar Strait coast (Eastern Sikhote Alin),” Stratigraphy. Geol. Correlation 9 (4), 387–405 (2001).

  8. A. Yu. Martynov, V. V. Golozubov, Yu. A. Martynov, and S. A. Kasatkin, “Lateral zonality of the East Sikhote-Alin volcanic belt: geodynamic regime in the Late Cretaceous,” Russ. J. Pac. Geol. 13 (3), 265–282 (2019).

  9. Yu. A. Martynov and A. I. Khanchuk, “Cenozoic volcanism of the Eastern Sikhote Alin: Petrological Studies and Outlooks,” Petrology 21 (1), 85–100 (2013).

  10. N. A. Nekrylov, D. V. Popov, and P. Yu. Plechov, “Garnet-pyroxenite-derived end-member magma type in Kamchatka: evidence from composition of olivine and olivine-hosted melt inclusions in Holocene rocks of Kekuknaisky Volcano,” Petrology 26 (4), 329–350 (2018).

  11. A. V. Oleinikov and N. A. Oleinikov, Cenozoic Geology of the Central Sikhote Alin (Dal’nauka, Vladivostok, 2005) [in Russian].

    Google Scholar 

  12. Petrographic Code of Russia. Magmatic, Metamorphic, Metasomatic, and Impact Rocks (VSEGEI, 2009).

    Google Scholar 

  13. V. G. Plakhotnik, “New data on the structure of the volcanic rocks of the Kizi Formation in Northeastern Sikhote-Alin,” Sov. Geologiya, No. 4, 120–122 (1962).

    Google Scholar 

  14. S. V. Rasskazov, T. A. Prikhod’ko, T. A. Yasygina, E. V. Fefelov, E. V. Saranina, I. P. Voinova, S. B. Brandt, “Mantle sources of the Cenozoic volcanic rocks of the Lake Kizi region in the Eastern Sikhote Alin (commented by reviewer Yu. A. Martynov),” Russ. J. Pac. Geol. 4 (5), 441–460 (2010).

  15. Regional Stratigraphic Scheme of the Paleogene and Neogene Sediments of the Southern Continental Part of Far East (Accepted by ISC in 1991) (Khabarovsk, 1994), p. 34 [in Russian].

  16. V. M. Savatenkov, I. M. Morozova, and L. K. Levskii, “Behavior of the Sm–Nd, Rb–Sr, K–Ar, and U–Pb isotopic systems during alkaline metasomatism: fenites in the outer-contact zone of an ultramafic–alkaline intrusion,” Geochem. Int. 42 (10), 899–920 (2004).

  17. A. I. Khanchuk, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IGEM RAN, Moscow, 1993).

  18. N. A. Shilo and Yu. A. Kosygin, Map of the Volcanotectonic Structures of the Coastal–Continental Part of the USSR Far East. 1 : 1 500 000 (1982) (1500).

  19. J. D. Adam, T. H. Green, and S. H. Sie, “Proton Microprobe Determined Partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta Between Experimentally Produced Amphiboles and Silicate Melts with Variable F Content,” Chem. Geol. 109 (1–4), 29–49 (1993).

  20. A. Aguillon-Robles, T. Caimus, H. Bellon, R. C. Maury, J. Cotton, J. Bourgois, and F. Michaund, “Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific Rise subduction below southern Baja California,” Geology 29 (6), 531–534 (2001).

  21. R. W. Carlson, “Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology,” Lithos 82 (3-4), 249–272 (2005).

  22. P. R. Castillo, S. J. Rigby, and R. U. Solidum, “Origin of high field strength element enrichment in volcanic arcs: geochemical evidence from the Sulu Arc, Southern Philippines,” Lithos 97 (3–4), 271–288 (2007).

  23. L. H. Chen, G. Zeng, S. Y. Jiang, A. W. Hofmann, X. S. Xu, “Sources of Anfengshan basalts: subducted lower crust in the Sulu UHP Belt, China,” Earth Planet Sci. Lett 286 (3–4), 426–435 (2009).

  24. J. M. Day, D. G. Pearson, C. G. Macpherson, D. Lowry, J. C. Carracedo, “Pyroxenite-rich mantle formed by recycled oceanic lithosphere: oxygen-osmium isotope evidence from Canary Island lavas,” Geology 37 (6), 555–558 (2009).

  25. M. J. Defant, T. E. Jackson, M. S. Drummond, J. Z. Deboer, H. Bellon, M. D. Feigenson, R. C. Maury, and R. H. Stewart, “The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview,” J. Geol. Soc. 149 (4), 569–579 (1992).

  26. T. Furman and D. Graham, “Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu Volcanic Province,” Lithos 48 (1–4), 237–262 (1999).

  27. H. Chris, “Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in Southern Africa using olivine chemistry,” Earth Planet. Sci. Lett. 475, 143–151 (2017).

  28. D. H. Green and A. E. Ringwood, “Mineral assemblages in a model mantle composition,” J. Geophys. Res. 68 (3), 937–944 (1963).

  29. R. T. Gregory and P. H. Taylor, Jr., “An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for 18O buffering of the oceans by deep (>5 Km) seawater-hydrothermal circulation at Midocean Ridges,” J. Geophys. Res. 86 (84), 2737–2755 (1981).

  30. C. Herzberg and P. D. Asimow, “Petrology of some oceanic island basalts: PRIMELT2. XLS software for primary magma calculation,” Geochem. Geophys. Geosyst 9 (9) (2008).

  31. C. Herzberg, “Identification of source lithology in the Hawaiian and Canary islands: implications for origins,” J. Petrol. 52 (1), 113–146 (2011).

  32. M. M. Hirschmann and E. M. Stolper, “A possible role for garnet pyroxenite in the origin of the 'garnet signature' in MORB,” Contrib. Mineral. Petrol. 124 (2), 185–208 (1996).

  33. T. Latourrette, R. L. Hervig, and J. R. Holloway, “Trace-element partitioning between amphibole, phlogopite, and basanite melt,” Earth Planet. Sci. Lett. 135 (1–4), 13–30 (1995).

  34. V. Le Roux, C. -T. A. Lee, and S. J. Turner, “Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle,” Geochim. Cosmochim. Acta 74 (9), 2779–2796 (2010).

  35. C. G. Macpherson, K. K. Chiang, R. Hall, G. M. Nowell, P. R. Castillo, and M. F. Thirlwall, “Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna Peninsula, Sabah, Borneo: implications for high-Nb basalt in subduction zones,” J. Volcanol. Geotherm. Res. 190 (1–2), 25–38 (2010).

  36. N. Morimoto, J. Fabries, A. K. Ferguson, et al., “Nomenclature of pyroxenes: report of the Subcommittee on Pyroxenes of the International Association, Commission on New Mineral and Mineral Names,” Am. Mineral. 73, 1123–1133 (1988).

  37. A. Nikulin, V. Levin, M. Carr, C. Herzberg, and M. West, “Evidence for two upper mantle sources driving volcanism in Central Kamchatka,” Earth Planet. Sci. Lett. 321–322, 14–19 (2012).

  38. D. J. Schulze, “Constrains of abundance of eclogite in the upper mantle,” J. Geophys. Res. 94, 4205–4212 (1989).

  39. A. V. Sobolev, A. W. Hofmann, S. V. Sobolev, and I. K. Nikogosian, “An olivine-free mantle source of Hawaiian shield basalts,” Nature 434, 590–597 (2005).

  40. A. V. Sobolev, A. W. Hofmann, G. Brugmann, V. G. Batanova, and D. V. Kuzmin, “Aquantitative link between recycling and osmium isotopes,” Science 321 (5888), 536 (2008).

  41. S. M. Straub, A. Gomez-Tuena, and F. M. Stuart, “Formation of hybrid arc andesites beneath thick continental crust,” Earth Planet. Sci. Lett. 303 (3–4), 337–347 (2011).

  42. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed, by A. D. Saunders & M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  43. J. W. Valley, N. Kitchen, M. J. Kohn, C. R. Niendorf, and M. J. Spicuzza, “UWG-2, a garnet standard for oxygen isotope ratio: strategies for high precision and accuracy with laser heating,” Geochim. Cosmochim. Acta 59, 5223–5231 (1995).

  44. Q. Wang, D. A. Wyman, J. F. Xu, Y. S. Wan, C. F. Li, F. Zi, Z. Q. Jiang, H. N. Qiu, Z. Y. Chu, Z. H. Zhao, and Y. H. Dong, “Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang Terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge,” Contrib. Mineral. Petrol. 155 (4), 473–490 (2008).

  45. L. Q. Xia, X. Y. Xu, Z. C. Xia, X. M. Li, Z. P. Ma, and L. S. Wang, “Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, Northwestern China,” Geology 116 (3), 419–433 (2004).

  46. A. Zindler and S. Hart, “Chemical geodynamics,” Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

  47. Zong-Feng Yang and Jun-Hong Zhou, “Can we identify source lithology of basalt?”, Sci. Rept., No. 3, pp. 1–7 (2013). https://doi.org/10.1038/srep01856

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Golozubov, Dr. Geol-Min Sci., and S.A. Kasatkina, Cand. Geol.-Min Sci. (Far East Geological Institute, Far East Branch, Russian Academy of Sciences) for organization and help in the performance of field studies.

Friendly critical comments by A.B. Perepelov (Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences) and N.V. Gorbach significantly improved the manuscript.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-05-00041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Martynov.

Additional information

Recommended for publishing by A.I. Khanchuk

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynov, A.Y., Martynov, Y.A. & Malinovskii, A.I. The Role of the Pyroxenite Mantle in the Magma Genesis of the Oligocene Basalts from the Northern Part of East Sikhote Alin. Russ. J. of Pac. Geol. 14, 557–570 (2020). https://doi.org/10.1134/S1819714020060056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714020060056

Keywords:

Navigation