Skip to main content
Log in

The Efficiency of the Preservation of Human Gut Microbiota in Liquid Nitrogen Depending on the Composition of the Cryoprotective Medium

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A comparative analysis of the survival rate of the human gut microbiota after low-temperature preservation under the protection of penetrating (dimethylsulfoxide and glycerol), nonpenetrating (gelatin) and gas (helium) protectors was performed. Increased resistance of intestinal bacteria to the effect of low temperatures was revealed. A significant portion of the bacteria (50.0 ± 3.0%) remained viable after freezing in liquid nitrogen without the cryoprotector(s). The greatest survival was achieved under the protection of 5% dimethylsulfoxide (86.0 ± 4.0%), 5% glycerol (82.0 ± 5.2%), and 10% gelatin (75.0 ± 5.0%). The combination of cell-penetrating (dimethylsulfoxide and glycerol) and nonpenetrating (gelatin) protectors did not lead to a synergistic effect. The use of atmospheric helium for cryoprotection of heterogeneous human gut microbiota did not increase its survival, even in combination with such powerful protectors as dimethylsulfoxide and glycerol, which indicates the need to optimize cryoprotection media, in particular, for strict anaerobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Possemiers, C. Grootaert, J. Vermeiren, et al., Cur. Pharmaceut. Design 15, 2051 (2009).

    Article  Google Scholar 

  2. Y. A. Poluektova, O. S. Lyashenko, O. S. Shifrin, et al., Russ. J. Gastroenterol. Hepatol. Coloproctol. 24, 85 (2014).

    Google Scholar 

  3. M. J. Blaser and S.Falkow, Nature Rev. Microbiol. 7, 887 (2009).

    Article  Google Scholar 

  4. A. Barzegari, S. Eslami, Gh. Elham, and O. Yadollah, Front. Microbiol. 31 (5), 393 (2014). https://doi.org/10.3389/fmicb.2014.00393

    Article  Google Scholar 

  5. A. Barzegari, N. Saeedi, and A. Saei, Future Microbiol. 9 (5), 639 (2014).

    Article  Google Scholar 

  6. D. P. Bojanova and S. R. Bardenstein, PLoS Biol. 14, e1002503 (2016).

    Article  Google Scholar 

  7. D. V. Smirnova, L. V. Zalomova, A. V. Zagainova, et al., Int. J. Med. Microbiol. 309, 259 (2019).

    Article  Google Scholar 

  8. C. L. Lauber, N. Zhou, J. I. Gordon, et al., FEMS Microbiol. Lett. 307 (1), 80 (2010).

    Article  Google Scholar 

  9. M. I. Bahl, A. Bergstrom, and T. R. Licht, FEMS Microbiol. Lett. 329, 193 (2012).

    Article  Google Scholar 

  10. I. M. Carroll, T. Ringel-Kulka, J. P. Siddle, et al., PLoS One 7 (10), e46953 (2012).

    Article  ADS  Google Scholar 

  11. F. Fouhy, J. Deane, M. C. Rea., et al., PLoS One 10 (3), e0119355 (2015).

    Article  Google Scholar 

  12. N. Gaci, P. P. Chaudhary, W. Tottey, et al., Microb. Ecol. Health Disease 28, 1308070 (2017). https://doi.org/10.1080/16512235.2017.1308070

    Article  Google Scholar 

  13. L. Bircher, C. Schwab, A. Geirnaert, and C. Ch. Lacroix, Microb. Biotechnol. 11 (1), 163 (2018).

    Article  Google Scholar 

  14. O. Plakash, Y. Nimonkar, and Y. Shouche, FEMS Microbiol. Lett. 339, 1 (2013).

    Article  Google Scholar 

  15. B. A. Shenderov, E. N. Gakhova, M. A. Manvelova, et al., RF Patent No. RU 2123044 (1998).

  16. F.-M. Kerckhof, E. N. P. Courtens, A. A. Geirnaert, et al., PLoS One 9 (6), e99517 (2014).

    Article  ADS  Google Scholar 

  17. A. Criste, M. Giuburuncă, O. Negrea, et al., Animal Sci. Biotechnol. 47 (2), 73 (2014).

    Google Scholar 

  18. B. J. Fuller, CryoLetters 25, 375 (2004).

    Google Scholar 

  19. R. C. Chian, in Fertility Cryopreservation, Ed. by R.-C. Chian and R. Quinn (Cambridge Univ. Press, Cambridge, 2010), pp. 1–9.

    Book  Google Scholar 

  20. M. Hasan, A. E. R. Fayter, and M. I. Gibson, Biomacromolecules 19 (8), 3371 (2018). https://doi.org/10.1021/acs.biomac.8b00660

    Article  Google Scholar 

  21. Z. Hubalek, Cryobiology 46, 205 (2003).

    Article  Google Scholar 

  22. D. Smith, M. J. Ryan, and E. Stackebrandt, in Encyclopedia of Life Support Systems. Biotechnology, Ed. by H. W. Doelle and E. J. DaSilva (EOLSS, Oxford, 2012).

    Google Scholar 

  23. S. V. Ugraitskaya, N. V. Shishova, E. L. Gagarinskiy, et al., Biophysics (Moscow) 63 (3), 387 (2018).

    Article  Google Scholar 

  24. A. I. Netrusov, M. A. Egorova, L. M. Zakharchuk, et al., A Practical Course in Microbiology (Akademiya, Moscow, 2005), pp. 103–104.

    Google Scholar 

  25. D. B. Roszak and R. R. Colwell, Microbiol. Rev. 51 (3), 365 (1987).

    Article  Google Scholar 

  26. V. A. Gant, G. Warres, I. Philips, and G. F. Savidge, J. Med. Microbiol. 39 (2), 147 (1993).

    Article  Google Scholar 

  27. T. Chen, A. Fowler, and M. Toner, Cryobiology 40, 277 (2000).

    Article  Google Scholar 

  28. F. W. Kleinhans, Cryobiology 37, 271 (1989).

    Article  Google Scholar 

  29. T. Nei., T. Araki, and T. Matsusaka, in Freezing and Drying of Microorganisms, Ed. by T. Nei (Tokyo: Univ. of Tokyo Press, 1969).

    Google Scholar 

  30. H. T. Meryman, R. J. Williams, and M. S. J. Douglas, Cryobiology 14, 287 (1977).

    Article  Google Scholar 

  31. P. Mazur, in Principles of Cryobiology in Life in the Frozen State, Ed. by B. J. Fuller, N. J. Lane, and E. E. Benson (CRC Press, Boca Raton, FL, 2004), pp. 3–65.

    Google Scholar 

  32. M. J. Prentice and J. Farrant, J. Clin. Microbiol. 6, 4 (1977).

    Google Scholar 

  33. H. T. Meryman, Annu. Rev. Bioph. Bioeng. 3, 341 (1974).

    Article  Google Scholar 

Download references

Funding

This research was carried out with the financial support of the RFBR, project no. 19-34-90187, as well as a contract no. 0373100122118000037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Zalomova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: DMSO—dimethyl sulfoxide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalomova, L.V., Reshetnikov, D.A., Ugraitskaya, S.V. et al. The Efficiency of the Preservation of Human Gut Microbiota in Liquid Nitrogen Depending on the Composition of the Cryoprotective Medium. BIOPHYSICS 65, 788–794 (2020). https://doi.org/10.1134/S000635092005022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635092005022X

Navigation