Skip to main content
Log in

Reduced Nitric Oxide Bioavailability in Horses with Colic: Evaluation by ESR Spectroscopy

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The pathogenesis of diseases of the gastrointestinal tract in horses is accompanied by inflammation and oxidative stress and may be caused by a lack of nitric oxide, which controls various signaling pathways in the body. The level of nitrites, which are metabolites of nitric oxide in horses with various intestinal diseases, has been evaluated in blood serum at 3.60 ± 3.02 μM and 8.3 ± 6.0 μM in horses at ages of 7–26 years and 1–5 years, respectively. A sharp reduction in the nitrite concentrations was observed in all horses with intestinal diseases (3.39 ± 2.85 μM), especially in horses with tympanitic caecum (0.6 ± 0.4 μM) and obstruction of the colon (0.81 ± 0.5 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. C. Barko, M. A. McMichael, K. S. Swanson, and D. A. Williams, J. Vet. Intern. Med. 32, 9 (2018).

    Article  Google Scholar 

  2. N. D. Cohen, Equine Vet. Educ. 14 (4), 212 (2002).

    Article  Google Scholar 

  3. E. Lorenz, Curr. Pharmaceut. Des. 12 (32), 4185 (2006).

    Article  Google Scholar 

  4. H. Hug, M. H. Mohajeri, and G. La Fata, Nutrients 10, 203 (2018).

    Article  Google Scholar 

  5. J. Vermeiren, T. Van de Wiele, W. Verstraete, et al., J. Biomed. Biotechnol. 2009, 284718 (2009).

    Article  Google Scholar 

  6. J. O. Lundberg and E. Weitzberg, Gut 62 (4), 616 (2013).

    Article  Google Scholar 

  7. F. A. Uzal and S. S. Diab, Vet. Clin. North Am. Equine Pract. 31, 337 (2015).

    Article  Google Scholar 

  8. 8. D. Rachmilewitz, J. S. Stamler, D. Bachwich, et al., Gut 36 (5), 718 (1995).

    Article  Google Scholar 

  9. M. Herulf, B. Svenungsson, A. Lagergren, et al., J. Infect. Dis. 180 (2), 542 (1999).

    Article  Google Scholar 

  10. N. K. Chokshi, Y. S. Guner, C. J. Hunter, et al., Semin. Perinatol. 32 (2), 92 (2008).

    Article  Google Scholar 

  11. R. E. Malmstrom, H. Bjorne, A. Oldner, et al., Shock 18 (5), 456 (2002).

    Article  Google Scholar 

  12. M. B. Grisham, K. P. Pavlick, F. S. Laroux, et al., J. Investig. Med. 50 (4), 272 (2002).

    Article  Google Scholar 

  13. D. M. McCafferty, J. S. Mudgett, M. G. Swain, and P. Kubes, Gastroenterology 112 (3), 1022 (1997).

    Article  Google Scholar 

  14. H. M. M. Ibrahim, J. Equine Vet. Sci. 34 (10), 1205 (2014).

    Article  Google Scholar 

  15. N. Gamper and L. Ooi, Antioxid. Redox Signaling 22 (6), 486 (2015).

    Article  Google Scholar 

  16. J. S. Stamler, O. Jaraki, J. Osborne, et al., Proc. Natl. Acad. Sci. U. S. A. 89 (16), 7674 (1992).

    Article  ADS  Google Scholar 

  17. D. T. Hess, A. Matsumoto, S.-O. Kim, et al., Nature Rev. Mol. Cell Biol. 6, 150 (2005).

    Article  Google Scholar 

  18. A. F. Vanin, V. A. Serezhenkov, V. D. Mikoyan, and M. V. Genkin, Nitric Oxide 2 (4), 224 (1998).

    Article  Google Scholar 

  19. V. P. Mokh, A. P. Poltorakov, V. A. Serezhenkov, and A. F. Vanin, Nitric Oxide 22 (4), 266 (2010).

    Article  Google Scholar 

  20. V. A. Serezhenkov, S. M. Borunova, M. I. Kuznetsova, and N. A. Tkachev, Dezinfekt. Antisept. 5 (1), 50 (2014).).

    Google Scholar 

  21. A. Gow and J. Stamler, Nature 391 (6663), 169 (1998).

    Article  ADS  Google Scholar 

  22. S. A. Rocks, C. A. Davies, S. L. Hicks, et al., Free Radic. Biol. Med. 39 (7), 937 (2005).

    Article  Google Scholar 

  23. P. H. MacArthur, S. Shiva, and M. T. Gladwin, J. Chromatogr. 851, 93 (2007).

  24. D. Tsikas, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 851, 51 (2007).

    Article  Google Scholar 

  25. M. H. Mirza, J. L. Oliver, T. L. Seahorn, et al., Can. J. Vet. Res. 63 (4), 230 (1999).

    Google Scholar 

  26. N. Galvin, H. Dillon, and F. McGovern, Irish Vet. J. 57 (8), 467 (2004).

    Article  Google Scholar 

  27. M. H. Mirza, T. L. Seahorn, J. L. Oliver, et al., Can. J. Vet. Res. 69, 106 (2005).

    Google Scholar 

  28. D. Tsikas, Anal. Biochem. 379 (2), 139 (2008).

    Article  Google Scholar 

  29. V. D. Mikoyan, L. N. Kubrina, V. A. Serezhenkov, et al., Biochim. Biophys. Acta 1336 (2), 225 (1997).

    Article  Google Scholar 

  30. S. K. Jackson, M. P. Thomas, S. Smith, et al., Faraday Discuss. 126, 103 (2004)

    Article  ADS  Google Scholar 

  31. G. Dijkstra, H. van Goor, P. L. Jansen, and H. Moshage, Curr. Opin. Invest. Drugs 5 (5), 529 (2004).

    Google Scholar 

  32. M. J. Rand and C. G. Li, Annu. Rev. Physiol. 57, 659 (1995).

    Article  Google Scholar 

  33. O. Dietz and B. Huskamp, Handbuch Pferdepraxis, 3rd ed. (Enke, 2006).

    Google Scholar 

  34. M. Kovach, Colic Horses. Causes. Diagnosis. Treatment (Royal Publ. House, 2010).

    Google Scholar 

  35. N. A. White and B. Edwards, Handbook of Equine Colic (Butterworth-Heinemann, Oxford, 2001).

    Google Scholar 

  36. H. Bult, G. E. Boeckxstaens, P. A. Pelckmans, et al., Nature 345, 346 (1990).

    Article  ADS  Google Scholar 

  37. N. E. Robinson, Current Therapy in Equine Medicine, 5th ed. (Saunders, 2003).

    Google Scholar 

  38. C. A. Reinders, D. Jonkers, E. A. Janson, et al., Scand. J. Gastroenterol. 42 (10), 1151 (2007).

    Article  Google Scholar 

  39. F. Dalloz, V. Maupoil, S. Lecour, et al., Mol. Cell. Biochem. 177, 193 (1997).

    Article  Google Scholar 

  40. C. Nathan and M. U. Shiloh, Proc. Natl. Acad. Sci. U. S. A. 97 (16), 8841 (2000).

    Article  ADS  Google Scholar 

  41. I. Bjarnason, J. Hayllar, A. J. MacPherson, and A. S. Russell, Gastroenterology 104, 832 (1993).

    Article  Google Scholar 

  42. R. P. Mason and P. D. Josephy, J. Inorg. Biochem. 24 (2), 161 (1985).

    Article  Google Scholar 

  43. B. Whittle, Expert Opin. Investig. Drugs 14 (11), 1347 (2005).

    Article  Google Scholar 

  44. A. Slivka, R. Chuttani, D. L. Carr-Locke, et al., J. Clin. Invest. 94 (5), 1792 (1994).

    Article  Google Scholar 

  45. S. Borniquel, E. A. Jansson, M. P. Cole, et al., Free Radic. Biol. Med. 48, 499 (2010).

    Article  Google Scholar 

  46. J. M. Lee, J. Y. Lim, Y. Kim, et al., Exp. Ther. Med. 12 (2), 573 (2016).

    Article  Google Scholar 

  47. A. F. Vanin, Nitric Oxide 54, 15 (2016).

    Article  Google Scholar 

  48. A. F. Vanin, Cell. Biochem. Biophys. 77 (4), 279 (2019).

    Article  Google Scholar 

  49. J. R. Hickok, D. Vasudevan, G. R. Thatcher, et al., Antioxid. Redox Signal. 17 (7), 962 (2012).

    Article  Google Scholar 

  50. H. Ischiropoulos, Arch. Biochem. Biophys. 356 (1), 1 (1998).

    Article  Google Scholar 

  51. D. Tsikas and J. C. Frolich, Circ. Res. 90, 39 (2002).

    Google Scholar 

  52. V. Y. Titov, A. M. Dolgorukova, V. G. Vertiprakhov, et al., Bull. Exp. Biol. Med. 168, 321 (2020).

    Article  Google Scholar 

  53. E. D. Lamprecht and Williams, C. A., Oxid. Med. Cell. Longev. 2012, 1 (2012).

    Article  Google Scholar 

  54. G. T. Mukosera, T. Liu, A. S. Ahmed, et al., Nitric Oxide 79, 57 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Serezhenkov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by A. Levina

Abbreviations: DNIC—dinitrosyl iron complexes; ESR—electronic spin resonance; MGD—N-methyl-D,L-glucaminedithiocarbamate; MNIC—mononitrosyl iron complexes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serezhenkov, V.A., Tkachev, N.A., Artyushina, Z.S. et al. Reduced Nitric Oxide Bioavailability in Horses with Colic: Evaluation by ESR Spectroscopy. BIOPHYSICS 65, 869–875 (2020). https://doi.org/10.1134/S0006350920050176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920050176

Keywords:

Navigation