Skip to main content
Log in

Reversible Phase Transition in the MoO2Cl2(DME) Structure with the Retention of the Crystal System and Space Group

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

A completely reversible phase transition in the MoO2Cl2(DME) compound with the retention of the crystal system and space group is discovered and studied. The transition is also accompanied by the doubling of the unit cell parameter and occurs without single crystal destruction. The crystal structure of the MoO2Cl2(DME) complex are determined at 160 (modification I) and 150 K (modification II) (CIF files CCDC nos. 1997752 and 1997751, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kuz’mina, L.G., Vedernikov, A.I., Gromov, S.P., and Alfimov, M.V., Crystallogr. Rep., 2019, vol. 64, no. 5, p. 691. https://doi.org/10.1134/S1063774519050122

    Article  Google Scholar 

  2. Marchivie, M., Guionneau, P., Howard, J.A.K., et al., J. Am. Chem. Soc., 2002, vol. 124, no. 2, p. 194. https://doi.org/10.1021/ja016980k

    Article  CAS  Google Scholar 

  3. Huang, S.-L., Andy-Hor, T.S., and Jin, G.-X., Coord. Chem. Rev., 2016, vol. 346, p. 112. https://doi.org/10.1016/j.ccr.2016.06.009

    Article  Google Scholar 

  4. Money, V.A., Radosavljevic-Evans, I., Halcrow, M.A., et al., Chem. Commun., 2003, p. 158. https://doi.org/10.1039/B210146G

  5. Mikhailov, A., Vukovic, V., and Kijatkin, C., et al., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2019, vol. 75, no. 6, p. 1152. https://doi.org/10.1107/S205252061901357X

    Article  CAS  Google Scholar 

  6. Manna, B., Desai, A.V., and Kumar, N., et al., Cryst. Eng. Commun., 2015, vol. 17, no. 46, p. 8796. https://doi.org/10.1039/c5ce00139k

    Article  CAS  Google Scholar 

  7. Yufit, D.S., Chetina, O.V., and Howard, J.A.K., J. Mol. Struct., 2006, vol. 784, nos. 1–3, p. 214. https://doi.org/10.1016/j.molstruc.2005.09.007

    Article  CAS  Google Scholar 

  8. Spencer, E.C., Angel, R.J., and Ross, N.L., et al., J. Am. Chem. Soc., 2009, vol. 131, no. 11, p. 4022. https://doi.org/10.1021/ja808531m

    Article  CAS  Google Scholar 

  9. Vatsadze, S.Z., Gavrilova, G.V., and Zyuz’kevich, F.S., et al., Russ. Chem. Bull., 2016, vol. 65, no. 7, p. 1761. https://doi.org/10.1007/s11172-016-1508-7

    Article  CAS  Google Scholar 

  10. Zaitsev, K.V., Lam, K., and Poleshchuk, O.Kh., et al., Eur. J. Inorg. Chem., 2019, no. 22, p. 2750. https://doi.org/10.1002/ejic.201900316

  11. Leech, M.A., Howard, J.A.K., Dahaoui, S., et al., Chem. Commun., 1999, no. 22, p. 2245. https://doi.org/10.1039/a906876g

  12. International Tables for Crystallography. Space-Group Symmetry, Hahn, Th., Ed., Dordrecht: Springer, 2005.

    Google Scholar 

  13. Rufanov, K.A., Zarubin, D.N., and Ustynyuk, N.A., et al., Polyhedron, 2001, vol. 20, no. 5, p. 379.

    Article  CAS  Google Scholar 

  14. Sheldrick, G.M., SADABS. Program for Scaling and Correction of Area Detector Data, Göttingen: Univ. of Göttingen, 1997.

    Google Scholar 

  15. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  16. Groom, C.R., Bruno, I.J., Lightfoot, M.P., and Ward, S.C., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, no. 2, p. 171. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  17. Dreisch, K., Andersson, C., and Stålhandske, C., Polyhedron, 1991, vol. 10, nos. 20–21, p. 2417. https://doi.org/10.1016/S0277-5387(00)86203-8

    Article  CAS  Google Scholar 

  18. Davis, M.F., Levason, W., Light, M., et al., Eur. J. Inorg. Chem., 2007, no. 13, p. 1903. https://doi.org/10.1002/ejic.200700043

  19. Kamenar, B., Penavić, M., Korpar-Čolig, B., and Marković, B., Inorg. Chim. Acta, 1982, vol. 65, p. L245. https://doi.org/10.1016/S0020-1693(00)93562-X

    Article  CAS  Google Scholar 

  20. Steiner, T., Crystallogr. Rev., 2003, vol. 9, nos. 2–3, p. 177. https://doi.org/10.1080/08893110310001621772

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. J.A.K. Howard (Durham University, Great Britain) for the kindly presented opportunity to use the diffractometric equipment and O.V. Dolomanov (Moscow State University, Russia) for fruitful discussion.

Funding

The phase transition was studied in terms of state assignment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Churakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The authors congratulate Academician of the Russian Academy of Sciences I.L. Eremenko on his 70th jubilee

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churakov, A.V., Rufanov, K.A. Reversible Phase Transition in the MoO2Cl2(DME) Structure with the Retention of the Crystal System and Space Group. Russ J Coord Chem 46, 812–816 (2020). https://doi.org/10.1134/S1070328420110020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328420110020

Keywords:

Navigation