Skip to main content
Log in

Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In this work, we reconstructed the absorption spectrum of different Synechocystis sp. PCC 6803 optical strains by summing the computed signature of all pigments present in this organism. To do so, modifications to in vitro pigment spectra were first required: namely wavelength shift, curve smoothing, and the package effect calculation derived from high pigment densities were applied. As a result, we outlined a plausible shape for the in vivo absorption spectrum of each chromophore. These are flatter and slightly broader in physiological conditions yet the mean weight-specific absorption coefficient remains identical to the in vitro conditions. Moreover, we give an estimate of all pigment concentrations without applying spectrophotometric correlations, which are often prone to error. The computed cell spectrum reproduces in an accurate manner the experimental spectrum for all the studied wavelengths in the wild-type, Olive, and PAL strain. The gathered pigment concentrations are in agreement with reported values in literature. Moreover, different illumination set-ups were evaluated to calculate the mean absorption cross-section of each chromophore. Finally, a qualitative estimate of light-limited cellular growth at each wavelength is given. This investigation describes a novel way to approach the cell absorption spectrum and shows all its inherent potential for photosynthesis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aasen AJ, Liaaen Jensen S (1966) Carotenoids of flexibacteria. IV. The carotenoids of two further pigment types. Acta Chem Scand 20(8):2322–2324

    CAS  PubMed  Google Scholar 

  • Ajlani G, Vernotte C (1998) Construction and characterization of a phycobiliprotein-less mutant of Synechocystis Sp. PCC 6803. Plant Mol Biol 37(3):577–580

    CAS  PubMed  Google Scholar 

  • Bennett A, Bogobad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58(2):419–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bidigare RR, Ondrusek ME, Morrow JH, Kiefer DA (1990) In-Vivo Absorption Properties of Algal Pigments. In: Ocean Optics X, SPIE, 290. https://spie.org/Publications/Proceedings/Paper/10.1117/12.21451. Accessed 31 March 2020

  • Bricaud A, Stramski D (1990) Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the peru upwelling areaand the Sargasso Sea. Limnol Oceanogr 35(3):562–582

    CAS  Google Scholar 

  • Bricaud A, Claustre H, Ras J, Oubelkheir K (2004) Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J Geophys Res 109:C11010

    Google Scholar 

  • Bryant DA, Glazer AN, Eiserling FA (1976) Characterization and structural properties of the major biliproteins of Anabaena Sp. Arch Microbiol 110(1):61–75

    CAS  PubMed  Google Scholar 

  • Buschmann C, Nagel E (1993) In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int J Remote Sens 14(4):711–722

    Google Scholar 

  • Cerullo G et al (2002) Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. Science 298(5602):2395–2398

    CAS  PubMed  Google Scholar 

  • Chábera P et al (2011) Excited-state properties of the 16kDa red carotenoid protein from arthrospira maxima. Biochimica et Biophysica Acta - Bioenergetics 1807(1):30–35

    Google Scholar 

  • Collins AM et al (2012) Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants. Plant Physiol 158(4):1600–1609

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Mooij T et al (2016) Impact of light color on photobioreactor productivity. Algal Res 15:32–42

    Google Scholar 

  • Eng D, Baranoski GVG (2007) The application of photoacoustic absorption spectral data to the modeling of leaf optical properties in the visible range. In: IEEE transactions on geoscience and remote sensing, pp 4077–4086. https://ieeexplore.ieee.org/document/4378552. Accessed 31 March 2020

  • Faccio G et al (2014) Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface. Sci Rep 4:5370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ficek D et al (2004) Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data. Oceanologia 46(4):533–555

    Google Scholar 

  • Fuente D et al (2017) Light distribution and spectral composition within cultures of micro-algae: quantitative modelling of the light field in photobioreactors. Algal Res 23

  • Fujiki T, Taguchi S (2002) Variability in Chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. J Plankton Res 24(9):859–874

    CAS  Google Scholar 

  • Gobets B, Van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507(1–3):80–99

    CAS  PubMed  Google Scholar 

  • Gobets B et al (2003) Excitation wavelength dependence of the fluorescence kinetics in photosystem I particles from Synechocystis PCC 6803 and Synechococcus Elongatus. Biophys J 85(6):3883–3898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong N, Li Z, Sun C, Men Z (2018) External field effect on electronic and vibrational properties of carotenoids. In: Progress in carotenoid research. InTech. https://www.intechopen.com/books/progress-in-carotenoid-research/external-field-effect-on-electronic-and-vibrational-properties-of-carotenoids. Accessed 31 March 2020

  • Green BR, Parson WW (2003) Light-harvesting antennas in photosynthesis. Adv Photosynth Resp 13:513

    Google Scholar 

  • Greg Mitchell B, Kiefer DA (1988) Chlorophyll α specific absorption and fluorescence excitation spectra for light-limited phytoplankton. Deep Sea Res A 35(5):639–663

    Google Scholar 

  • Herbert SK, Han T, Vogelmann TC (2000) New applications of photoacoustics to the study of photosynthesis. Photosynth Res 66(1–2):13–31

    CAS  PubMed  Google Scholar 

  • Hertzberg S, Liaaen-Jensen S, Siegelman HW (1971) The carotenoids of blue-green algae. Phytochemistry 10(12):3121–3127

    CAS  Google Scholar 

  • Hiyama T, Nishimura M, Chance B (1969) Determination of carotenes by thin-layer chromatography. Anal Biochem 29(2):339–342

    CAS  PubMed  Google Scholar 

  • Hoepffner N, Sathyendranath S (1991) Effect of pigment composition on absorption properties of phytoplankton. Mar Ecol Prog Ser 73:11–23

    CAS  Google Scholar 

  • Jordan P et al (2001) Three-dimensional structure of cyanobaoterial photosystem I at 2.5 Å resolution. Nature 411(6840):909–917

    CAS  PubMed  Google Scholar 

  • Joshua S, Mullineaux CW (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol 135(4):2112–2119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakitani T, Honig B, Crofts AR (1982) Theoretical studies of the electrochromic response of carotenoids in photosynthetic membranes. Biophys J 39(1):57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian O et al (2007) Responses of a thermophilic synechococcus isolate from the microbial mat of octopus spring to light. Appl Environ Microbiol 73(13):4268–4278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kłodawska K et al (2015) Elevated growth temperature can enhance photosystem I trimer formation and affects xanthophyll biosynthesis in cyanobacterium Synechocystis Sp. PCC6803 Cells. Plant Cell Physiol 56(3):558–571

    PubMed  Google Scholar 

  • Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The metabolic network of Synechocystis Sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 154(1):410–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo K, Ochiai Y, Katayama M, Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. Plant Physiol 144(2):1200–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopečná J, Komenda J, Bučinská L, Sobotka R (2012) Long-term acclimation of the cyanobacterium Synechocystis Sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol 160(4):2239–2250

    PubMed  PubMed Central  Google Scholar 

  • Kwon J-H, Rögner M, Rexroth S (2012) Direct approach for bioprocess optimization in a continuous flat-bed photobioreactor system. J Biotechnol 162(1):156–162

    CAS  PubMed  Google Scholar 

  • Kwon JH et al (2013) Reduced light-harvesting antenna: consequences on cyanobacterial metabolism and photosynthetic productivity. Algal Res 2(3):188–195

    Google Scholar 

  • Lagarde D, Vermaas W (1999) The zeaxanthin biosynthesis enzyme β-carotene hydroxylase is involved in myxoxanthophyll synthesis in Synechocystis Sp. PCC 6803. FEBS Lett 454(3):247–251

    CAS  PubMed  Google Scholar 

  • Lauceri R, Bresciani M, Lami A, Morabito G (2018) Chlorophyll a interference in phycocyanin and allophycocyanin spectrophotometric quantification. J Limnol 77(1):169–177

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148(C):350–382

    CAS  Google Scholar 

  • Lindblad P et al (2019) CyanoFactory, a European Consortium to develop technologies needed to advance cyanobacteria as chassis for production of chemicals and fuels. Algal Res 41:101510

    Google Scholar 

  • Liu H et al (2019) Phycobilisomes harbor FNRL in cyanobacteria. mBio 10: e00669–19.

  • Luimstra VM et al (2018) Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth Res 138(2):177–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luimstra VM et al (2019) Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynth Res 141(3):291–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Ogawa T, Shen Y, Mi H (2007) Changes in cyclic and respiratory electron transport by the movement of phycobilisomes in the cyanobacterium Synechocystis Sp. Strain PCC 6803. Biochem Biophys Acta 1767(6):742–749

    CAS  PubMed  Google Scholar 

  • MacColl R (2004) Allophycocyanin and energy transfer. Biochem Biophys Acta 1657(2–3):73–81

    CAS  PubMed  Google Scholar 

  • Manodori A, Melis A (1986) Cyanobacterial acclimation to photosystem I or photosystem II light. Plant Physiol 82(1):185–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGee D et al (2020) Influence of spectral intensity and quality of LED lighting on photoacclimation, carbon allocation and high-value pigments in microalgae. Photosynth Res 143(1):67–80

    CAS  PubMed  Google Scholar 

  • Moal G, Lagoutte B (2012) Photo-induced electron transfer from photosystem i to NADP+: characterization and tentative simulation of the in vivo environment. Biochem Biophys Acta 1817(9):1635–1645

    CAS  PubMed  Google Scholar 

  • Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res Part A 28(11):1375–1393

    Google Scholar 

  • Münzner P, Voigt J (1992) Blue light regulation of cell division in chlamydomonas reinhardtii. Plant Physiol 99(4):1370–1375

    PubMed  PubMed Central  Google Scholar 

  • Orr L, Govindjee (2013) Photosynthesis web resources. Photosynth Res 115(2–3):179–214

    CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) “Determination of Accurate Extinction Coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA 975(3):384–394

    CAS  Google Scholar 

  • Rabe AE, Benoit RJ (1962) Mean light intensity—a useful concept in correlating growth rates of dense cultures of microalgae. Biotechnol Bioeng 4(4):377–390

    Google Scholar 

  • Rakhimberdieva MG, Boichenko VA, Karapetyan NV, Stadnichuk IN (2001) Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium spirulina platensis. Biochemistry 40(51):15780–15788

    CAS  PubMed  Google Scholar 

  • Remelli W, Santabarbara S (2018) Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium Synechocystis Sp. PPC6803: influence on the estimation of photosystem II maximal quantum efficiency. Biochem Biophys Acta 1859(11):1207–1222

    CAS  Google Scholar 

  • Rögner M, Nixon PJ, Diner BA (1990) Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium synechocystis PCC 6803. J Biol Chem 265(11):6189–6196

    PubMed  Google Scholar 

  • Simis SGH, Kauko HM (2012) In vivo mass-specific absorption spectra of phycobilipigments through selective bleaching. Limnol Oceanogr 10(4):214–226

    CAS  Google Scholar 

  • Singh AK et al (2009) A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiol 151(3):1596–1608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stirbet A, Lazár D, Papageorgiou GC, Govindjee (2019) Chlorophyll a fluorescence in cyanobacteria: relation to photosynthesis. In: Cyanobacteria. Elsevier, pp 79–130

  • Stramski D, Morel A (1990) Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance. Deep Sea Res A 37(2):245–266

    CAS  Google Scholar 

  • Takaichi S, Maoka T, Masamoto K (2001) Myxoxanthophyll in Synechocystis Sp. PCC 6803 is myxol 2′-dimethyl-fucoside, (3R,2′S)-myxol 2′-(2,4-Di-O-methyl-α-l-fucoside), not rhamnoside. Plant Cell Physiol 42(7):756–762

    CAS  PubMed  Google Scholar 

  • Thrane J-E et al (2015) Spectrophotometric analysis of pigments: a critical assessment of a high-throughput method for analysis of algal pigment mixtures by spectral deconvolution, ed. Schmitt FG. PLOS ONE 10(9): e0137645

  • Tian L et al (2011) Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J Am Chem Soc 133(45):18304–18311

    CAS  PubMed  Google Scholar 

  • Touloupakis E, Cicchi B, Torzillo G (2015) A bioenergetic assessment of photosynthetic growth of Synechocystis Sp. PCC 6803 in continuous cultures. Biotechnol Biofuels 8(1):133

    PubMed  PubMed Central  Google Scholar 

  • Tsunoyama Y et al (2009) Multiple rieske proteins enable short- and long-term light adaptation of Synechocystis Sp. PCC 6803. J Biol Chem 284(41):27875–27883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyystjärvi T et al (2002) Action spectrum of PsbA gene transcription is similar to that of photoinhibition in Synechocystis Sp. PCC 6803. FEBS Lett 516(1–3):167–171

    PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473(7345):55–60

    CAS  PubMed  Google Scholar 

  • Vajravel S et al (2016) β-Carotene influences the phycobilisome antenna of cyanobacterium Synechocystis Sp. PCC 6803. Photosynth Res 130(1–3):403–415

    CAS  PubMed  Google Scholar 

  • van Amerongen H, van Grondelle R, Valkunas L (2000) Photosynthetic excitons. World Scientific. https://www.worldscientific.com/worldscibooks/10.1142/3609. Accessed 28 March 2020

  • von Wobeser EA et al (2011) Concerted changes in gene expression and cell physiology of the cyanobacterium Synechocystis sp. strain PCC 6803 during transitions between nitrogen and light-limited growth. Plant Physiol 155(3):1445–1457

    Google Scholar 

  • Warren CK, Weedon BCL (1958) 804. Carotenoids and related compounds. Part VII. Synthesis of canthaxanthin and echinenone. J Chem Soc (Resumed) 3986–393.

  • Westermark S, Steuer R (2016) Toward multiscale models of cyanobacterial growth: a modular approach. Front Bioeng Biotechnol 4(DEC)

  • Woźniak B et al (2003) Modelling light and photosynthesis in the marine environment. Oceanologia 45(2):171–245

    Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris

    Google Scholar 

  • Yacobi YZ, Köhler J, Leunert F, Gitelson A (2015) Phycocyanin-specific absorption coefficient: eliminating the effect of chlorophylls absorption. Limnol Oceanogr 13(4):e10015

    Google Scholar 

  • Zakar T et al (2017) Lipid and carotenoid cooperation-driven adaptation to light and temperature stress in Synechocystis Sp PCC6803. Biochem Biophys Acta 1858(5):337–350

    CAS  Google Scholar 

  • Zavřel T et al (2015) Characterization of a model cyanobacterium Synechocystis Sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng Life Sci 15(1):122–132

    Google Scholar 

  • Zavřel T, Očenášová P, Červený J (2017) Phenotypic characterization of Synechocystis Sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress, ed. Jacobs JM. PLOS ONE 12(12): e0189130

  • Zhang Y et al (2017) An extended PROSPECT: advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and B. Sci Rep 7:6429

    PubMed  PubMed Central  Google Scholar 

  • Zhao W, Xie J, Xiuling Xu, Zhao J (2015) State transitions and fluorescence quenching in the cyanobacterium Synechocystis PCC 6803 in response to changes in light quality and intensity. J Photochem Photobiol B 142:169–177

    CAS  PubMed  Google Scholar 

  • Zlenko DV et al (2019) Role of the PB-LOOP in ApcE and phycobilisome core function in cyanobacterium Synechocystis Sp PCC 6803. Biochim Biophys Acta 1860(2):155–166

    CAS  Google Scholar 

Download references

Acknowledgements

We kindly acknowledge Alberto Conejero for his suggestions on the modeling part.

Funding

DF was supported by an internal grant of Palacký University Olomouc (no. IGA_PrF_2020_028) and DL by the ERDF project “Plants as a tool for sustainable global development” (no. CZ.02.1.01/0.0/0.0/16–019/0000827)."

Author information

Authors and Affiliations

Authors

Contributions

DF and JFU conceived the research; DF and JVO-V performed the simulations; DF, DL, and JFU analyzed the data; DF did the experiments, wrote the manuscript with contributions from DL, JVO-V, and JFU, and agreed to serve as the author responsible for contact and ensured communication.

Corresponding author

Correspondence to David Fuente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 1768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuente, D., Lazar, D., Oliver-Villanueva, J.V. et al. Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments. Photosynth Res 147, 75–90 (2021). https://doi.org/10.1007/s11120-020-00799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00799-8

Keywords

Navigation