Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular-weight and cooling-rate dependence of polymer thermodynamics in molecular dynamics simulation

Abstract

Molecular dynamics (MD) simulations are conducted to systematically benchmark the effects of molecular weight, chain number, and cooling rate on the glass transition temperature (Tg) and coefficient of thermal expansion (CTE) of poly(ethylene oxide) (PEO). Hyperbolic regression as an objective identified method is used to extract Tg and CTE. The results show that for a cooling rate higher than 5 × 1013 K/min, Tg and CTE are both strongly affected by rapid quenching. For a cooling rate lower than 5 × 1013 K/min, Tg and CTE in the high-temperature domain still slightly depend on the cooling rate. Eventually, to eliminate the finite size effect of the model, a threshold molecular weight of 11,240 g/mol should be satisfied in the system. In addition, the chain number must be more than 10, at least for an oligomer system (50 monomers).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ward IM, Hadley DW. An introduction to the mechanical properties of solid polymers. John Wiley & Sons, Chichester, UK; 1993.

  2. Wu C. Simulated glass transition of poly (ethylene oxide) bulk and film: a comparative study. J Phys Chem B. 2011;115:11044–52.

    CAS  PubMed  Google Scholar 

  3. Lukasheva N, Tolmachev D, Nazarychev V, Kenny J, Lyulin S. Influence of specific intermolecular interactions on the thermal and dielectric properties of bulk polymers: atomistic molecular dynamics simulations of Nylon 6. Soft matter. 2017;13:474–85.

    CAS  PubMed  Google Scholar 

  4. Yang S, Qu J. Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations. Polymer. 2012;53:4806–17.

    CAS  Google Scholar 

  5. Li M, Liu X, Qin J, Gu Y. Molecular dynamics simulation on glass transition temperature of isomeric polyimide. Express Polym Lett. 2009;3:665–75.

    CAS  Google Scholar 

  6. Li C, Medvedev GA, Lee E-W, Kim J, Caruthers JM, Strachan A. Molecular dynamics simulations and experimental studies of the thermomechanical response of an epoxy thermoset polymer. Polymer. 2012;53:4222–30.

    CAS  Google Scholar 

  7. Soldera A, Metatla N. Glass transition of polymers: atomistic simulation versus experiments. Phys Rev E. 2006;74:061803.

    Google Scholar 

  8. Barrat J-L, Baschnagel J, Lyulin A. Molecular dynamics simulations of glassy polymers. Soft Matter. 2010;6:3430–46.

    CAS  Google Scholar 

  9. Buchholz J, Paul W, Varnik F, Binder K. Cooling rate dependence of the glass transition temperature of polymer melts: molecular dynamics study. J Chem Phys. 2002;117:7364–72.

    CAS  Google Scholar 

  10. Fox TG Jr, Flory PJ. Second‐order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys. 1950;21:581–91.

    CAS  Google Scholar 

  11. Durand M, Meyer H, Benzerara O, Baschnagel J, Vitrac O. Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix. J Chem Phys. 2010;132:194902.

    CAS  PubMed  Google Scholar 

  12. Kausik R, Mattea C, Fatkullin N, Kimmich R. Confinement effect of chain dynamics in micrometer thick layers of a polymer melt below the critical molecular weight. J Chem Phys. 2006;124:114903.

    PubMed  Google Scholar 

  13. Liang T, Yang X, Zhang X. Prediction of polyimide materials with high glass‐transition temperatures. Polym Phys. 2001;39:2243–51.

    CAS  Google Scholar 

  14. Pan R, Liu X, Zhang A, Gu Y. Molecular simulation on structure–property relationship of polyimides with methylene spacing groups in biphenyl side chain. Comput Mater Sci. 2007;39:887–95.

    CAS  Google Scholar 

  15. Lyulin SV, Larin SV, Gurtovenko AA, Nazarychev VM, Falkovich SG, Yudin VE, et al. Thermal properties of bulk polyimides: insights from computer modeling versus experiment. Soft Matter. 2014;10:1224–32.

    CAS  PubMed  Google Scholar 

  16. Li C, Coons E, Strachan A. Material property prediction of thermoset polymers by molecular dynamics simulations. Acta Mechanica. 2014;225:1187–96.

    Google Scholar 

  17. Lyulin S, Gurtovenko A, Larin S, Nazarychev V, Lyulin A. Microsecond atomic-scale molecular dynamics simulations of polyimides. Macromolecules. 2013;46:6357–63.

    CAS  Google Scholar 

  18. Patrone PN, Dienstfrey A, Browning AR, Tucker S, Christensen S. Uncertainty quantification in molecular dynamics studies of the glass transition temperature. Polymer. 2016;87:246–59.

    CAS  Google Scholar 

  19. Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed. 2006;45:1198–215.

    CAS  Google Scholar 

  20. Blumberg AA, Pollack SS, Hoeve C. A poly (ethylene oxide)–mercuric chloride complex. J Polym Sci Part A Gen Pap. 1964;2:2499–502.

    Google Scholar 

  21. Tadokoro H. Structure of crystalline polyethers. J Polym Sci Macromol Rev. 1967;1:119–72.

    CAS  Google Scholar 

  22. Jiang Y, Yan X, Ma Z, Mei P, Xiao W, You Q, et al. Development of the PEO based solid polymer electrolytes for all-solid state lithium ion batteries. Polymers. 2018;10:1237.

    PubMed Central  Google Scholar 

  23. Harris JM, editor. Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications. New York: Plenum Press; 1992.

  24. Accelrys. Materials Studio. http://accelrys.com/products/collaborative-science/biovia-materials-studio/ 2016.

  25. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.

    CAS  Google Scholar 

  26. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–9.

    Google Scholar 

  27. Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695.

    CAS  Google Scholar 

  28. Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182.

    CAS  Google Scholar 

  29. Swope WC, Andersen HC, Berens PH, Wilson KR. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys. 1982;76:637–49.

    CAS  Google Scholar 

  30. Sun H, Mumby SJ, Maple JR, Hagler AT. An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc. 1994;116:2978–87.

    CAS  Google Scholar 

  31. Maple JR, Dinur U, Hagler AT. Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proc Natl Acad Sci. 1988;85:5350–4.

    CAS  PubMed  Google Scholar 

  32. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mater Sci Eng. 2009;18:015012.

    Google Scholar 

  33. Niedzwiedz K, Wischnewski A, Pyckhout-Hintzen W, Allgaier J, Richter D, Faraone A. Chain dynamics and viscoelastic properties of poly (ethylene oxide). Macromolecules. 2008;41:4866–72.

    CAS  Google Scholar 

  34. Yang H, Li Z-S, Qian H-J, Yang Y-B, Zhang X-B, Sun C-C. Molecular dynamics simulation studies of binary blend miscibility of poly(3-hydroxybutyrate) and poly(ethylene oxide). Polymer. 2004;45:453–7.

    CAS  Google Scholar 

  35. Luo Z, Jian J. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends. Polymer. 2010;51:291–9.

    CAS  Google Scholar 

  36. Brandrup J, Immerput EH, editors. Polymer handbook, 3rd ed. New York: Wiley; 1989.

  37. Tsay SF, Liu CF. System-size effects in the molecular dynamics simulation of metallic crystallization. Physics Letters A. 1994;192:374–8.

    CAS  Google Scholar 

  38. Deng L, Du JC. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations. J. Chem. Phys. 2018;148:024504.

    PubMed  Google Scholar 

  39. Mark JE. Polymer data handbook, New York: Oxford University Press; 2009.

  40. Faucher J, Koleske J, Santee E Jr, Stratta J, Wilson C III. Glass transitions of ethylene oxide polymers. J Appl Phys. 1966;37:3962–4.

    CAS  Google Scholar 

  41. Vogel M. Conformational and structural relaxations of poly (ethylene oxide) and poly (propylene oxide) melts: molecular dynamics study of spatial heterogeneity, cooperativity, and correlated forward–backward motion. Macromolecules. 2008;41:2949–58.

    CAS  Google Scholar 

  42. Schmidtke B, Hofmann M, Lichtinger A, Rössler E. Temperature dependence of the segmental relaxation time of polymers revisited. Macromolecules. 2015;48:3005–13.

    CAS  Google Scholar 

  43. Bormuth A, Henritzi P, Vogel M. Chain-length dependence of the segmental relaxation in polymer melts: molecular dynamics simulation studies on poly (propylene oxide). Macromolecules. 2010;43:8985–92.

    CAS  Google Scholar 

  44. John V. Chang, editor. Frontiers in Condensed Matter Physics Research. New York: Nova Science Publishers, Inc.; 2006.

  45. Doolittle AK. Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free‐space. J Appl Phys. 1951;22:1471–5.

    CAS  Google Scholar 

  46. Cohen MH, Turnbull D. Molecular transport in liquids and glasses. J Chem Phys. 1959;31:1164–9.

    CAS  Google Scholar 

  47. Simha R, Boyer R. On a general relation involving the glass temperature and coefficients of expansion of polymers. J Chem Phys. 1962;37:1003–7.

    CAS  Google Scholar 

  48. Luo Z, Jian J. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends. Polymer. 2010;51:291–9.

    CAS  Google Scholar 

  49. Huang D, Simon SL, McKenna GB. Chain length dependence of the thermodynamic properties of linear and cyclic alkanes and polymers. J Chem Phys. 2005;122:084907.

    Google Scholar 

  50. Ribeiro CP Jr, Freeman BD. Sorption, dilation, and partial molar volumes of carbon dioxide and ethane in cross-linked poly (ethylene oxide). Macromolecules. 2008;41:9458–68.

    CAS  Google Scholar 

  51. Bicerano J. Prediction of polymer properties. New York: Marcel Dekker, Inc.; 2002.

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology of Taiwan for financially supporting this research under Contract Nos. MOST 106-2622-E-492 -022 -CC3– and 107-2221-E-492 -011 -MY3. Support for significant computing resources from the NCHC in Taiwan is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jay Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YC., Zhang, JF., Chiu, MH. et al. Molecular-weight and cooling-rate dependence of polymer thermodynamics in molecular dynamics simulation. Polym J 53, 455–462 (2021). https://doi.org/10.1038/s41428-020-00443-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00443-1

This article is cited by

Search

Quick links