Skip to main content

Advertisement

Log in

LCL resonant current depression control strategy against pulse width modulated harmonic voltage under low switching frequency

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

The LCL filter is widely used in grid connected converters for good harmonic mitigation performance. With pulse width modulation strategy, converter terminal voltage contains various sideband harmonic components together with expected components corresponding to the modulation wave, especially under a low switching frequency. Considerable resonant current can be generated if the undesired sideband harmonic voltage is located around the LCL resonant frequency. With the background of a medium voltage three-level wind power converter, where the switching frequency is as low as 1.5 kHz, a resonant current depression strategy is proposed against undesired sideband harmonic voltage under low switching frequency. Additional compensators are adopted in the converter current loop. Depending on the system mathematical model, two solutions, a Butterworth low pass filter and a notch filter, based on phase compensation and amplitude compensation, are proposed in this paper. It is shown that the Butterworth low pass filter exhibits better resonant current depression performance, while the notch filter performance is better in terms of system stability. Simulation and experimental results validated the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Beres, R.N., Wang, X., Liserre, M., Blaabjerg, F., Leth Bak, C.: A review of passive power filters for three-phase grid-connected voltage-source converters. IEEE Trans. Emerg. Selected Topics Power Electron. 4(1):54–69 (2016)

  2. He, J., Li, Y.: Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters. IEEE Trans. Power Electron. 27(4), 1850–1861 (2012)

    Article  Google Scholar 

  3. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation. IEEE Trans. Ind. Electron. 62(3), 1537–1547 (2015)

    Article  Google Scholar 

  4. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter. IEEE Trans. Power Electron. 29(7), 3414–3427 (2014)

    Article  Google Scholar 

  5. Li, X., Wu, X., Geng, Y., Yuan, X.: Wide damping region for LCL-type grid-connected inverter with an improved capacitor-current-feedback method. IEEE Trans. Power Electron. 30(9), 5247–5259 (2015)

    Article  Google Scholar 

  6. Wang, X., Blaabjerg, F., Loh, P.C.: Virtual RC damping of LCL-filtered voltage source converters with extended selective harmonic compensation. IEEE Trans. Power Electron. 30(9), 4726–4737 (2015)

    Article  Google Scholar 

  7. He, Y., Wang, X., Ruan, X., Pan, D., Xu, X., Liu, F.: Capacitor-current proportional-integral positive feedback active damping for LCL-type grid-connected inverter to achieve high robustness against grid impedance variation. IEEE Trans. Power Electron. 34(12), 12423–12436 (2019)

    Article  Google Scholar 

  8. Wang, X., Bao, C., Ruan, X., Li, W., Pan D.: Design considerations of digitally controlled LCL-filtered inverter with capacitor-current-feedback active damping. IEEE J. Emerg. Sel. Top. Power Electron. 2(4): 972–984 (2014)

  9. Wagner, M., Barth, T., Alvarez, R., Ditmanson, C., Bernet, S.: Discrete-time active damping of LCL-resonance by proportional capacitor current feedback. IEEE Trans. Ind. Appl., 50(6), 3911–3920 (2014)

  10. Dannehl, J., Funchs, F.W., Hansen, S., Thogersen, P.B.: Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters. IEEE Trans. Ind. Appl., 46(4), 1509–1517 (2010)

  11. Pena-Alzola R., Liseerre, M., Blaabjerg, F., Ssbastian, R., Dannehl, J., Fuchs, F.W.: Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters. IEEE Trans. Ind. Inf., 10(1), 43–52 (2014)

  12. Zhen, X., Loh, P.C., Wang, X., Blaabjerg, F., Tang, Y.: Highly accurate derivatives for LCL-filtered grid converter with capacitor voltage active damping. IEEE Trans. Power Electron. 31(5), 3612–3625 (2016)

    Article  Google Scholar 

  13. Pan, D., Ruan, X., Wang, X.: Direct realization of digital differentiators in discrete domain for active damping of LCL-type grid-connected inverter. IEEE Trans. Power Electron. 33(10), 8461–8473 (2018)

    Article  Google Scholar 

  14. Xu, J., Xie, S., Tang, T.: Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only. IEEE Trans. Ind. Electron. 61(9), 4746–4758 (2014)

    Article  Google Scholar 

  15. Liu, T., Liu, Z., Liu, J., Liu, Z.: A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters. IEEE Trans. Power Electron. 35(1), 247–262 (2020)

    Article  Google Scholar 

  16. Wang, X., Blaabjerg, F., Loh, P.C.: Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters. IEEE Trans. Power Electron. 31(1), 213–223 (2016)

    Article  Google Scholar 

  17. Xin, Z., Wang, X., Loh, P.C., Blaabjerg, F.: Grid-current-feedback control for LCL-filtered grid converters with enhanced stability. IEEE Trans. Power Electron. 32(4), 3216–3228 (2017)

    Article  Google Scholar 

  18. R.-Perez, J., Bueno, E.J., P.-Alzola, R., R.-Cabero, A.: All-pass-filter-based active damping for VSCs with LCL filters connected to weak grids. IEEE Trans. Power Electron., 33(11), 9890–9901 (2018)

  19. Yao, W., Yang, Y., Zhang, X., Blaabjerg, F., Loh, P.C.: Design and analysis of robust active damping for LCL filters using digital notch filters. IEEE Trans. Power Electron., 32(3), 2360–2375 (2017)

  20. Dannehl, J., Liserre, M., Fuchs, F.W.: Filter-based active damping of voltage source converters with LCL filter. IEEE Trans. Ind. Electron., 58(8), 3623–3622 (2011)

  21. Tang, Y., Loh, P.C., Wang, P., Choo, F.H., Gao, F.: Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters. IEEE Trans. Power Electron. 27(3), 1433–1443 (2012)

    Article  Google Scholar 

  22. Chen, H.-C., Cheng, P.T., Wang, X., Blaabjerg, F.: A passivity-based stability analysis of the active damping technique in the offshore wind farm applications. IEEE Trans. Ind. Appl. 54(5), 5074–5082 (2018)

    Article  Google Scholar 

  23. R.-Diza, E., Freijedo, F.D., Vasquez, J.C., Guerrero, J.M.: Analysis and comparison of notch filter and capacitor voltage feedforward active damping techniques for LCL Grid-connected converters. IEEE Trans. Power Electron., 34(4), 3958–3972 (2019)

  24. Aapro, A., Messo, T., Roinila, T., Suntio, T.: Effect of active damping on output impedance of three-phase grid-connected converter. IEEE Trans. Ind. Appl., 64(9), 7532–7541 (2019)

  25. Yoon, C., Bai, H., Beres, R.N., Wang, X., Leth Bak C., Blaabjerg, F.: Harmonic stability assessment for multiparalleled, grid-connected inverters. IEEE Trans. Sustainable Energy, 64(9), 1388–1397 (2016)

  26. Harnefors, L., Finger, R., Wang, X., Bai, H., Blaabjerg, F.: VSC Input-admittance modeling and analysis above the nyquist frequency for passivity-based stability assessment. IEEE Trans. Ind. Electron., 65(8), 6362–6370 (2017)

  27. Sadabadi, M.S., Haddadi, A., Karimi, H., Karimi, A.: A Robust active damping control strategy for an LCL-based grid-connected DG Unit. IEEE Trans. Ind. Electron., 64(10), 8055–8065 (2017)

  28. Hedayati, M.H., B., A.A., John, V.: Common-mode and differential-mode active damping for PWM rectifiers. IEEE Trans. Power Electron., 29(6), 3188–3200 (2017)

  29. Wang, B., Xu, Y., Shen, Z., Zou, J., Li, C., Liu, H.: Current control of grid-connected inverter with LCL filter based on extended-state observer estimations using single sensor and achieving improved robust observation dynamics. IEEE Trans. Power Electron. 64(7), 5428–5439 (2017)

    Google Scholar 

  30. Errouissi, R., Al-Durra, A.: Design of PI controller together with active damping for grid-tied LCL-filter systems using disturbance-observer-based control approach. IEEE Trans. Ind. Appl., 54(4), 3820–3831 (2018)

  31. Z. Ma, L. Zhou, J. Liu: Proportional capacitor current feedback based active damping control for LCL-filter converters with considerable control delay. In: Proc. IEEE Applied Power Electronic Conference and Exposition, pp. 3110–3114 (2020)

  32. Z. Ma, L. Zhou, J. Liu: Harmonic current depression for medium voltage three-level wind power converter with active damping control. In: Proc. IEEE Applied Power Electronic Conference and Exposition, pp 3271–3275 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linyuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Zhou, L., Liu, J. et al. LCL resonant current depression control strategy against pulse width modulated harmonic voltage under low switching frequency. J. Power Electron. 21, 416–426 (2021). https://doi.org/10.1007/s43236-020-00190-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00190-9

Keywords

Navigation