Skip to main content
Log in

X-Ray Luminescence of ZnO Tetrapods Grown in the Presence of Copper and Gold Admixtures in Initial Charge

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We investigated the morphology and luminescent properties of ZnO tetrapod powders with copper and gold admixtures, obtained by carbothermal pyrolysis. A broad band in the region of 450–650 nm dominates in the X-ray luminescence spectrum of the samples. There is also a weak edge luminescence band with a maximum at 391 nm. Kinetic measurements showed the presence of both fast (~1 ns) and slow (~850 ns) luminescence components, and the fast component, as a rule, did not exceed 1% of the integrated intensity. The used doping method does not result in the incorporation of copper and gold admixtures into the ZnO lattice. The presence of copper at a concentration of up to 9% does not affect the morphology or luminescence properties of ZnO tetrapods, while gold has such an effect even at a concentration close to 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. O. A. Lyapina, A. N. Baranov, G. N. Panin, A. V. Knotko, and O. V. Kononenko, Inorg. Mater. 44, 846 (2008). https://doi.org/10.1134/S0020168508080116

    Article  Google Scholar 

  2. K. Oka, H. Shibata, and S. Kashiwaya, J. Cryst. Growth 237, 509 (2002). https://doi.org/10.1016/S0022-0248(01)01953-4

    Article  ADS  Google Scholar 

  3. F. Huang, Z. Lin, W. Lin, J. Zhang, K. Ding, Y. Wang, Q. Zheng, Z. Zhan, F. Yan, D. Chen, P. Lv, and X. Wang, Chin. Sci. Bull. 59, 1235 (2014). https://doi.org/10.1007/s11434-014-0154-4

    Article  Google Scholar 

  4. M. R. Wagner, G. Callsen, J. S. Reparaz, J. H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, Phys. Rev. B 84, 035313 (2011). https://doi.org/10.1103/PhysRevB.84.035313

    Article  ADS  Google Scholar 

  5. P. A. Rodnyi, K. A. Chernenko, and I. D. Venevtsev, Opt. Spectrosc. 125, 372 (2018). https://doi.org/10.1134/S0030400X18090205

    Article  ADS  Google Scholar 

  6. E. I. Gorokhova, P. A. Rodnyi, I. V. Khodyuk, G. V. Anan’eva, V. A. Demidenko, and E. D. Bourret-Courchesne, J. Opt. Technol. 75, 741 (2008).

    Article  Google Scholar 

  7. E. G. Rakov, Russ. Chem. Rev. 76, 1 (2007). https://doi.org/10.1070/RC2007v076n01ABEH003641

    Article  ADS  Google Scholar 

  8. L. N. Demyanets, L. E. Li, A. S. Lavrikov, and S. V. Nikitin, Crystallogr. Rep. 55, 142 (2010). https://doi.org/10.1134/S1063774510010219

    Article  ADS  Google Scholar 

  9. Q. Zhu, J. Lu, Y. Wang, F. Qin, Z. Shi, and C. Xu, Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep36194

    Article  Google Scholar 

  10. A. M. Opolchentsev, L. A. Zadorozhnaya, Ch. M. Briskina, V. M. Markushev, A. P. Tarasov, A. E. Muslimov, and V. M. Kanevskii, Opt. Spectrosc. 125, 522 (2018). https://doi.org/10.1134/S0030400X1810017X

    Article  ADS  Google Scholar 

  11. P. A. Rodnyi, S. B. Mikhrin, A. N. Mishin, and A. V. Sidorenko, IEEE Trans. Nucl. Sci. 48, 2340 (2001). https://doi.org/10.1109/23.983264

    Article  ADS  Google Scholar 

  12. N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G. Cantwell, Appl. Phys. Lett. 81, 622 (2002). https://doi.org/10.1063/1.1494125

    Article  ADS  Google Scholar 

  13. R. Dingle, Phys. Rev. Lett. 23, 579 (1969). https://doi.org/10.1103/PhysRevLett.23.579

    Article  ADS  Google Scholar 

  14. Z. A. Khan, A. Rai, S. R. Barman, and S. Ghosh, Appl. Phys. Lett. 102, 022105 (2013). https://doi.org/10.1063/1.4775359

    Article  ADS  Google Scholar 

  15. X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, Appl. Surf. Sci. 253, 6905 (2007). https://doi.org/10.1016/j.apsusc.2007.02.013

    Article  ADS  Google Scholar 

  16. A. N. Gruzintsev, A. N. Redkin, and K. Bartkhou, Semiconductors 44, 628 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Task of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences in the part of “obtaining tetrapod powders,” the Russian Foundation for Basic Research (in the part of “structural diagnostics of tetrapod powders” project no. 18-29-12099 MK) and in the part of “investigation of the luminescence and scintillation characteristics of tetrapods” (project no. 18-52-76002 ERA_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Venevtsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venevtsev, I.D., Muslimov, A.E., Zadorozhnaya, L.A. et al. X-Ray Luminescence of ZnO Tetrapods Grown in the Presence of Copper and Gold Admixtures in Initial Charge. Opt. Spectrosc. 128, 1784–1788 (2020). https://doi.org/10.1134/S0030400X20110272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20110272

Keywords:

Navigation