Skip to main content
Log in

The Influence of Asymmetric Charge Transfer on IR Spectra of Excited Quadrupole Molecules

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The influence of symmetry breaking caused by charge transfer in excited quadrupole molecules of the D-π-A-π-D or A-π-D-π-A type, where A and D are the electron-acceptor and electron-donor groups, respectively, on spectra of characteristic vibrations is investigated. Types of possible changes in IR spectra with increase in molecule’s asymmetry are classified within the earlier developed theory of symmetry breaking and its manifestation in nonstationary IR spectra. Physical interpretation of the revealed trends is presented, and the latter are compared with currently available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, et al., Science (Washington, DC, U. S.) 281, 1653 (1998). https://doi.org/10.1126/science.281.5383.1653

    Article  ADS  Google Scholar 

  2. C. le Droumaguet, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, Chem. Commun., 2802 (2005). https://doi.org/10.1039/B502585K

  3. A. Nowak-Krol, M. Grzybowski, J. Romiszewski, M. Drobizhev, G. Wicks, M. Chotkowski, A. Rebane, E. Gorecka, and D. T. Gryko, Chem. Commun. 49, 8368 (2013). https://doi.org/10.1039/C3CC44728F

    Article  Google Scholar 

  4. H. Yao, T. Okada, and N. Mataga, J. Phys. Chem. 93, 7388 (1989). https://doi.org/10.1021/j100358a028

    Article  Google Scholar 

  5. J. J. Piet, W. Schuddeboom, B. R. Wegewijs, F. C. Grozema, and J. M. Warman, J. Am. Chem. Soc. 123, 5337 (2001). https://doi.org/10.1021/ja004341o

    Article  Google Scholar 

  6. H. Y. Woo, B. Liu, B. Kohler, D. Korystov, A. Mikhailovsky, and G. C. Bazan, J. Am. Chem. Soc. 127, 14721 (2005). https://doi.org/10.1021/ja052906g

    Article  Google Scholar 

  7. B. Strehmel, A. M. Sarker, and H. Detert, ChemPhysChem. 4, 249 (2003). https://doi.org/10.1002/cphc.200390041

    Article  Google Scholar 

  8. C. Katan, F. Terenziani, O. Mongin, M. H. V. Werts, L. Porrès, T. Pons, J. Mertz, S. Tretiak, and M. Blanchard-Desce, J. Phys. Chem. A 109, 302 (2005). https://doi.org/10.1021/jp044193e

    Article  Google Scholar 

  9. M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Angew. Chem., Int. Ed. 48, 3244 (2009). https://doi.org/10.1002/anie.200805257

    Article  Google Scholar 

  10. B. Dereka, A. Rosspeintner, Z. Li, et al., J. Am. Chem. Soc. 138, 4643 (2016). https://doi.org/10.1021/jacs.6b01362

    Article  Google Scholar 

  11. B. Dereka, A. Rosspeintner, M. Krzeszewski, et al., Angew. Chem., Int. Ed. 55, 15624 (2016). https://doi.org/10.1002/anie.201608567

    Article  Google Scholar 

  12. B. Dereka, A. Rosspeintner, R. Stezycki, et al., J. Phys. Chem. Lett. 8, 6029 (2017). https://doi.org/10.1021/acs.jpclett.7b02944

    Article  Google Scholar 

  13. B. Dereka and E. Vauthey, J. Phys. Chem. Lett. 8, 3927 (2017). https://doi.org/10.1021/acs.jpclett.7b01821

    Article  Google Scholar 

  14. F. Terenziani, A. Painelli, C. Katan, et al., J. Am. Chem. Soc. 128, 15742 (2006). https://doi.org/10.1021/ja064521j

    Article  Google Scholar 

  15. A. I. Ivanov, B. Dereka, and E. Vauthey, J. Chem. Phys. 146, 164306 (2017). https://doi.org/10.1063/1.4982067

    Article  ADS  Google Scholar 

  16. A. I. Ivanov and V. G. Tkachev, J. Chem. Phys. 151, 124309 (2019). https://doi.org/10.1063/1.5116015

    Article  ADS  Google Scholar 

  17. A. I. Ivanov, J. Phys. Chem. C 122, 29165 (2018). https://doi.org/10.1021/acs.jpcc.8b10985

    Article  Google Scholar 

  18. A. E. Nazarov and A. I. Ivanov, Russ. J. Phys. Chem. A 86, 1607 (2020). https://doi.org/10.31857/S004445372008021X

    Article  Google Scholar 

  19. A. E. Nazarov, A. I. Ivanov, and E. Vauthey, J. Phys. Chem. C 124, 2357 (2020). https://doi.org/10.1021/acs.jpcc.9b10565

    Article  Google Scholar 

  20. A. I. Ivanov and V. G. Tkachev, Bull. Russ. Acad. Sci.: Phys. 84, 520 (2020). https://doi.org/10.31857/S0367676520050130

    Article  MathSciNet  Google Scholar 

  21. B. Dereka, J. Helbing, and E. Vauthey, Angew. Chem., Int. Ed. 57, 17014 (2018). https://doi.org/10.1002/anie.201808324

    Article  Google Scholar 

  22. M. Söderberg, B. Dereka, A. Marrocchi, B. Carlotti, and E. Vauthey, J. Phys. Chem. Lett. 10, 2944 (2019). https://doi.org/10.1021/acs.jpclett.9b01024

    Article  Google Scholar 

Download references

Funding

This research was supported by the Russian Foundation for Basic Research, project no. 19-03-00175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ivanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachev, V.G., Ivanov, A.I. The Influence of Asymmetric Charge Transfer on IR Spectra of Excited Quadrupole Molecules. Opt. Spectrosc. 128, 1707–1714 (2020). https://doi.org/10.1134/S0030400X20110260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20110260

Keywords:

Navigation