Skip to main content
Log in

Photostability and Photoinduced Processes in CuInS2/ZnS Quantum Dots and Their Hybrid Structures with Multilayer Graphene Nanoribbons

  • NANOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The photostability of the luminescent properties of CuInS2/ZnS quantum dots (CIS/ZnS QDs) as a monolayer on a dielectric substrate and as part of a hybrid structure with multilayer graphene nanoribbons (ML GNRs) has been studied. Analysis of the luminescence kinetics of quantum dots has revealed the presence of three main components of luminescence attenuation, characterized by times of the order of 20, 100, and 300 ns. It has been shown that the efficiency of the interaction between CIS/ZnS quantum dots and multilayer graphene nanoribbons has a dependence on the number of graphene monolayers similar to that of CdSe quantum dots. The photostability of CIS/ZnS QDs on a dielectric substrate and in structures with multilayer graphene nanoribbons has been estimated, which allowed us to estimate the energy/charge transfer rates from QDs to multilayer graphene nanoribbons as 106–107 s–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. P. J. Wu, J. W. Yu, H. J. Chao, and J. Y. Chang, Chem. Mater. 6, 3485 (2014).

    Article  Google Scholar 

  2. Z. X. Pan, I. Mora-Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. H. Zhong, and J. Bisquert, J. Am. Chem. Soc. 136, 9203 (2014).

    Article  Google Scholar 

  3. CW. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, J. Phys. Chem. C 119, 2852 (2015).

    Article  Google Scholar 

  4. I. V. Martynenko, D. Kusic, F. Weigert, S. Stafford, F. C. Donnelly, R. Evstigneev, Y. Gromova, A. V. Baranov, H. J. Kunte, Y. K. Gun’ko, and U. Resch-Genger, Anal. Chem. 91, 12661 (2019).

    Article  Google Scholar 

  5. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, Nature (London, U.K.) 515, 96 (2014).

    Article  ADS  Google Scholar 

  6. Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, Chem. Soc. 137, 10276 (2015).

    Article  Google Scholar 

  7. D. E. Nam, W. S. Song, and H. Yang, J. Mater. Chem. 21, 18220 (2011).

    Article  Google Scholar 

  8. J. Kolny-Olesiak and H. Weller, ACS Appl. Mater. Interfaces 5, 12221 (2013).

    Article  Google Scholar 

  9. C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, J. Phys. Chem. C 119, 2852 (2015).

    Article  Google Scholar 

  10. S. L. Castro, S. G. Bailey, and R. P. Raffaelle, Chem. Mater. 15, 3142 (2003).

    Article  Google Scholar 

  11. H. Nakamura, W. Kato, and M. Uehara, Chem. Mater. 18, 3330 (2006).

    Article  Google Scholar 

  12. P. H. Chuang, C. C. Lin, and R. S. Liu, ACS Appl. Mater. Interfaces 6, 15379 (2014).

    Article  Google Scholar 

  13. W. S. Song and H. Yang, Chem. Mater. 24, 1961 (2012).

    Article  Google Scholar 

  14. A. T. Nguyen, F. Gao, D. Baucom, and C. D. Heyes, J. Phys. Chem. C 124, 10744 (2020).

    Article  Google Scholar 

  15. Z. Wang, X. Zhang, W. Xin, D. Yao, Y. Liu, L. Zhang, W. Liu, W. Zhang, W. Zheng, B. Yang, and H. Zhang, Chem. Mater. 30, 8939 (2018).

    Article  Google Scholar 

  16. J. A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, and D. K. Schwartz, Science (Washington, DC, U. S.) 263, 1726 (1994).

    Article  ADS  Google Scholar 

  17. Y. Justo, I. Moreels, K. Lambert, and Z. Hens, Nanotechnology 21, 295606 (2010).

    Article  Google Scholar 

  18. X. Wang, Z. Liang, X. Xu, N. Wang, J. Fang, J. Wang, and G. Xu, J. Alloys Compd. 640, 134 (2015).

    Article  Google Scholar 

  19. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, arXiv: 0712.0835.

  20. Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, ACS Nano 4, 2964 (2010).

    Article  Google Scholar 

  21. K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll, and A. N. Vamivakas, Appl. Phys. Lett. 108, 02110 (2016).

    Article  Google Scholar 

  22. P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, J. Phys. Chem. C 120, 17136 (2016).

    Article  Google Scholar 

  23. I. Reznik, A. Zlatov, M. Baranov, R. Zakoldaev, A. Veniaminov, S. Moshkalev, and A. Orlova, Nanomaterials 10, 714 (2020).

    Article  Google Scholar 

  24. Y. Gromova, A. Alaferdov, S. Rackauskas, V. Ermakov, A. Orlova, V. Maslov, S. Moshkalev, A. Baranov, and A. Fedorov, J. Appl. Phys. 118, 104305 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Federal Target Program for Research and Development of the Ministry of Science and Higher Education of the Russian Federation, grant no. 14.587.21.0047 (ID RFMEFI58718X0047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Reznik.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reznik, I.A., Kurshanov, D.A., Dubovik, A.Y. et al. Photostability and Photoinduced Processes in CuInS2/ZnS Quantum Dots and Their Hybrid Structures with Multilayer Graphene Nanoribbons. Opt. Spectrosc. 128, 1901–1909 (2020). https://doi.org/10.1134/S0030400X20110223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20110223

Keywords:

Navigation