Skip to main content

Advertisement

Log in

Maintenance of superhydrophobic concrete for high compressive strength

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Concrete is often used in building, bridges, dams, roads and other infrastructures. However, the porosities and natural hydrophilicity of concrete often induce the damage of the concrete architecture or other disasters. Endowing the concrete with superhydrophobicity can effectively improve the antifreeze–thaw, anti-corrosion and anti-icing properties and expand the application prospect of concrete in the modern construction industry. Despite all this, the compressive strength of superhydrophobic concrete is not high enough, limiting its application. Here, we maintained superhydrophobic concrete for 28 days and improved the compressive strength for 3.5 times from 10 MPa to 34.48 MPa. The main mechanism is that calcium silicate hydrate structures grow with the increase in maintenance time and make the inside microstructures connected more closely. In addition, XPS spectra were also collected to investigate the chemical compositions of the superhydrophobic concrete. A series of tests were carried out on superhydrophobic concrete and indicated that the superhydrophobic concrete after maintenance had high surface robustness, anti-corrosion property and high anti-icing and deicing capacity, showing the application value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Picker A, Nicoleau L, Burghard Z, Bill J, Zlotnikov I, Labbez C, Nonat A, Colfen H (2017) Mesocrystalline calcium silicate hydrate: a bioinspired route toward elastic concrete materials. Science Advances 3(11):6. https://doi.org/10.1126/sciadv.1701216

    Article  CAS  Google Scholar 

  2. Frýbort A, Všianský D, Štulířová J, Stryk J, Gregerová M (2018) Variations in the composition and relations between alkali-silica gels and calcium silicate hydrates in highway concrete. Mater Charact 137:91–108. https://doi.org/10.1016/j.matchar.2018.01.012

    Article  CAS  Google Scholar 

  3. Li WT, Pour-Ghaz M, Castro J, Weiss J (2012) Water Absorption and critical degree of saturation relating to freeze-thaw damage in concrete pavement joints. J Mater Civ Eng 24(3):299–307. https://doi.org/10.1061/(asce)mt.1943-5533.0000383

    Article  CAS  Google Scholar 

  4. Zhang J (2012) Chloride erosion on calcium silicate hydrate gel in concrete. Appl Mech Mat 174–177:421–424. https://doi.org/10.4028/www.scientific.net/AMM.174-177.421

    Article  CAS  Google Scholar 

  5. Zhu Y-G, Kou S-C, Poon C-S, Dai J-G, Li Q-Y (2013) Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cement Concr Compos 35(1):32–38. https://doi.org/10.1016/j.cemconcomp.2012.08.008

    Article  CAS  Google Scholar 

  6. Saravanan K, Sathiyanarayanan S, Muralidharan S, Azim SS, Venkatachari G (2007) Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment. Prog Org Coat 59(2):160–167

    Article  CAS  Google Scholar 

  7. Almusallam AA, Khan FM, Dulaijan SU, Al-Amoudi OSB (2003) Effectiveness of surface coatings in improving concrete durability. Cement Concr Compos 25(4):473–481

    Article  CAS  Google Scholar 

  8. Wang L, Quan H, Li Q (2019) Effect of solid waste-petroleum coke residue on the hydration reaction and property of concrete. Mat (Basel). https://doi.org/10.3390/ma12081216

    Article  Google Scholar 

  9. Flores-Vivian I, Hejazi V, Kozhukhova MI, Nosonovsky M, Sobolev K (2013) Self-assembling particle-siloxane coatings for superhydrophobic concrete. ACS Appl Mater Interfaces 5(24):13284–13294. https://doi.org/10.1021/am404272v

    Article  CAS  Google Scholar 

  10. Wang D, Sun Q, Hokkanen MJ, Zhang C, Lin FY, Liu Q, Zhu SP, Zhou T, Chang Q, He B, Zhou Q, Chen L, Wang Z, Ras RHA, Deng X (2020) Design of robust superhydrophobic surfaces. Nature 582(7810):55–59. https://doi.org/10.1038/s41586-020-2331-8

    Article  CAS  Google Scholar 

  11. Golovin K, Dhyani A, Thouless MD, Tuteja A (2019) Low-interfacial toughness materials for effective large-scale deicing. Science. https://doi.org/10.1126/science.aav1266

    Article  Google Scholar 

  12. Wang L, Gong Q, Zhan S, Jiang L, Zheng Y (2016) Robust anti-icing performance of a flexible superhydrophobic surface. Adv Mater 28(35):7729–7735. https://doi.org/10.1002/adma.201602480

    Article  CAS  Google Scholar 

  13. Yang X, Song J, Liu J, Liu X, Jin Z (2017) A Twice Electrochemical-etching method to fabricate superhydrophobic-superhydrophilic patterns for biomimetic fog harvest. Sci Rep 7(1):8816. https://doi.org/10.1038/s41598-017-09108-1

    Article  CAS  Google Scholar 

  14. Xiao M, Guo X, Cheng M, Ju G, Zhang Y, Shi F (2014) pH-responsive on-off motion of a superhydrophobic boat: towards the design of a minirobot. Small 10(5):859–865. https://doi.org/10.1002/smll.201302132

    Article  CAS  Google Scholar 

  15. Jiang CG, Xin SC, Wu CW (2011) Drag reduction of a miniature boat with superhydrophobic grille bottom. AIP Adv 1(3):032148. https://doi.org/10.1063/1.3633686

    Article  Google Scholar 

  16. Song J, Huang S, Hu K, Lu Y, Liu X, Xu W (2013) Fabrication of superoleophobic surfaces on Al substrates. Journal of Materials Chemistry A 1(46):14783. https://doi.org/10.1039/c3ta13807k

    Article  CAS  Google Scholar 

  17. Song J, Xu W, Liu X, Lu Y, Wei Z, Wu L (2012) Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method. Chem Eng J 211–212:143–152. https://doi.org/10.1016/j.cej.2012.09.094

    Article  CAS  Google Scholar 

  18. Qing Y, Shi S, Lv C, Zheng Q (2020) Microskeleton-Nanofiller composite with mechanical super-robust superhydrophobicity against abrasion and impact. Adv Func Mater. https://doi.org/10.1002/adfm.201910665

    Article  Google Scholar 

  19. Masoud Emarati S, Mozammel M (2020) Theoretical, fundamental and experimental study of liquid-repellency and corrosion resistance of fabricated superamphiphobic surface on Al alloy 2024. Chem Eng J 387:124046. https://doi.org/10.1016/j.cej.2020.124046

    Article  CAS  Google Scholar 

  20. Lian Z, Xu J, Yu Z, Yu P, Ren W, Wang Z, Yu H (2020) Bioinspired reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property on the nanosecond laser-ablated superhydrophobic titanium surfaces. ACS Appl Mater Interfaces 12(5):6573–6580. https://doi.org/10.1021/acsami.9b17639

    Article  CAS  Google Scholar 

  21. Trdan U, Hočevar M, Gregorčič P (2017) Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance. Corros Sci 123:21–26. https://doi.org/10.1016/j.corsci.2017.04.005

    Article  CAS  Google Scholar 

  22. Zhang Q, Jin B, Wang B, Fu Y, Zhan X, Chen F (2017) Fabrication of a highly stable superhydrophobic surface with dual-scale structure and its antifrosting properties. Ind Eng Chem Res 56(10):2754–2763. https://doi.org/10.1021/acs.iecr.6b04650

    Article  CAS  Google Scholar 

  23. Xiang T, Han Y, Guo Z, Wang R, Zheng S, Li S, Li C, Dai X (2018) Fabrication of inherent anticorrosion superhydrophobic surfaces on metals. ACS Sustainable Chemistry & Engineering 6(4):5598–5606. https://doi.org/10.1021/acssuschemeng.8b00639

    Article  CAS  Google Scholar 

  24. Zhong Y, Hu J, Zhang Y, Tang S (2018) The one-step electroposition of superhydrophobic surface on AZ31 magnesium alloy and its time-dependence corrosion resistance in NaCl solution. Appl Surf Sci 427:1193–1201. https://doi.org/10.1016/j.apsusc.2017.08.103

    Article  CAS  Google Scholar 

  25. Zhang Y, Yin M-J, Ouyang X, Zhang AP, Tam H-Y (2020) 3D μ-printing of polytetrafluoroethylene microstructures: a route to superhydrophobic surfaces and devices. Appl Mat Today 19:100580. https://doi.org/10.1016/j.apmt.2020.100580

    Article  Google Scholar 

  26. Khandavalli S, Rogers P, Rothstein JP (2018) Roll-to-roll fabrication of hierarchical superhydrophobic surfaces. Appl Phys Lett 113(4):041601. https://doi.org/10.1063/1.5037946

    Article  CAS  Google Scholar 

  27. Song J, Zhao D, Han Z, Xu W, Lu Y, Liu X, Liu B, Carmalt CJ, Deng X, Parkin IP (2017) Super-robust superhydrophobic concrete. J Mat Chem A 5(28):14542–14550. https://doi.org/10.1039/c7ta03526h

    Article  CAS  Google Scholar 

  28. Song J, Li Y, Xu W, Liu H, Lu Y (2019) Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. J Colloid Interface Sci 541:86–92. https://doi.org/10.1016/j.jcis.2019.01.014

    Article  CAS  Google Scholar 

  29. Wan H, Zhang Y (2020) Interfacial bonding between graphene oxide and calcium silicate hydrate gel of ultra-high performance concrete. Mat Struct. https://doi.org/10.1617/s11527-020-01467-y

    Article  Google Scholar 

  30. Brau M, Ma-Hock L, Hesse C, Nicoleau L, Strauss V, Treumann S, Wiench K, Landsiedel R, Wohlleben W (2012) Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: a combined assessment of benefits and risks. Arch Toxicol 86(7):1077–1087. https://doi.org/10.1007/s00204-012-0839-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by National Natural Science Foundation of China (NSFC, 51605078), Young Elite Scientists Sponsorship Program by CAST (YESS, 2017QNRC001), and Aviation Science Fund (2017ZE63012) and Dalian Youth Science and Technology Star (2018RQ01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siying Ling, Jinlong Song or Shungang Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 18710 kb)

Supplementary material 2 (MPG 12466 kb)

Supplementary material 3 (MPG 12827 kb)

Supplementary material 4 (MPG 2333 kb)

Supplementary material 5 (MPG 2476  kb)

Supplementary material 6 (MPG 12439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Chen, Y., Xu, K. et al. Maintenance of superhydrophobic concrete for high compressive strength. J Mater Sci 56, 4588–4598 (2021). https://doi.org/10.1007/s10853-020-05558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05558-7

Navigation