Skip to main content
Log in

Abaca fibre reinforced polymer composites: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural fibre reinforced polymer composites are used in structural applications for production of light weight components due to their high specific strength. Abaca fibre as reinforcement in polymer matrices became popular due to applications of its polymer composite in production of exterior components of passenger cars. The present review emphasises on the properties, treatments and extraction of abaca fibre. It also provides an overview of research works related to preparation and properties (mechanical, structural and thermal properties) of abaca fibre reinforced polymer composites. Moreover, it also highlights the research gaps from available literatures, which brings out the paucity of literatures on modelling and simulation of mechanical properties of abaca composites based on polymer matrices like polyester, polylactide, epoxy, phenol formaldehyde, high density polyethylene (HDPE) and polystyrene.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Copyright 2014, Elsevier

Figure 2

Copyright 2016, Elsevier

Figure 3

Copyright 2018, Elsevier

Figure 4

Copyright 2014, Elsevier

Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kiruthika AV (2017) A review on physico-mechanical properties of bast fibre reinforced polymer composites. J Build Eng 9:91–99. https://doi.org/10.1016/j.jobe.2016.12.003

    Article  Google Scholar 

  2. Adesina OT, Jamiru T, Sadiku ER, Ogunbiyi OF, Beneke LW (2019) Mechanical evaluation of hybrid natural fibre–reinforced polymeric composites for automotive bumper beam: a review. Int J Adv Manuf Technol 103:1781–1797. https://doi.org/10.1007/s00170-019-03638-w

    Article  Google Scholar 

  3. Ferreira JAM, Capela C, Costa JD (2010) A study of the mechanical properties of natural fibre reinforced composites. Fibers Polym 11:1181–1186. https://doi.org/10.1007/s12221-010-1181-7

    Article  CAS  Google Scholar 

  4. Singha AS, Thakur VK (2008) Mechanical properties of natural fibre reinforced polymer composites. Bull Mater Sci 31:791–799. https://doi.org/10.1007/s12034-008-0126-x

    Article  CAS  Google Scholar 

  5. Singha AS, Thakur VK (2009) Synthesis and characterization of short Saccaharum Cilliare fibre reinforced polymer composites. E-Journal Chem 6:34–38. https://doi.org/10.1155/2009/176072

    Article  CAS  Google Scholar 

  6. Kinloch AJ, Taylor AC, Techapaitoon M, Teo WS, Sprenger S (2015) Tough, natural-fibre composites based upon epoxy matrices. J Mater Sci 50:6947–6960. https://doi.org/10.1007/s10853-015-9246-z

    Article  CAS  Google Scholar 

  7. Kumar R, Ul Haq MI, Raina A, Anand A (2019) Industrial applications of natural fibre-reinforced polymer composites – challenges and opportunities. Int J Sustain Eng 12:212–220. https://doi.org/10.1080/19397038.2018.1538267

    Article  Google Scholar 

  8. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A et al (2001) Current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131. https://doi.org/10.1023/A:1017512029696

    Article  CAS  Google Scholar 

  9. Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19:714–725. https://doi.org/10.1007/s10924-011-0320-6

    Article  CAS  Google Scholar 

  10. Low NMP (1986) Observation of chemical hydration in inorganic mineral fibres. J Mater Sci 21:998–1004. https://doi.org/10.1007/BF01117385

    Article  CAS  Google Scholar 

  11. Shah DU (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48:6083–6107. https://doi.org/10.1007/s10853-013-7458-7

    Article  CAS  Google Scholar 

  12. Wan Nadirah WO, Jawaid M, Al Masri AA, Abdul Khalil HPS, Suhaily SS, Mohamed AR (2012) Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. J Polym Environ 20:404–411. https://doi.org/10.1007/s10924-011-0380-7

    Article  CAS  Google Scholar 

  13. Shankar PS, Reddy KT, Sekhar VC (2013) Mechanical performance and analysis of banana fiber reinforced epoxy composites. Int J Recent Trends Mech Eng 1:1–10

    CAS  Google Scholar 

  14. Zadeh KM, Inuwa IM, Arjmandi R, Hassan A, Almaadeed M, Mohamad Z et al (2017) Effects of date palm leaf fiber on the thermal and tensile properties of recycled ternary polyolefin blend composites. Fibers Polym 18:1330–1335. https://doi.org/10.1007/s12221-017-1106-9

    Article  CAS  Google Scholar 

  15. Chand N, Sood S, Singh DK, Rohatgi PK (1987) Structural and thermal studies on sisal fibre. J Therm Anal 32:595–599. https://doi.org/10.1007/BF01912712

    Article  Google Scholar 

  16. Hughes M (2012) Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites. J Mater Sci 47:599–609. https://doi.org/10.1007/s10853-011-6025-3

    Article  CAS  Google Scholar 

  17. Clifton S, Thimmappa BHS, Selvam R, Shivamurthy B (2020) Polymer nanocomposites for high-velocity impact applications-a review. Compos Commun 17:72–86. https://doi.org/10.1016/j.coco.2019.11.013

    Article  Google Scholar 

  18. Mahesh V, Joladarashi S, Kulkarni SM (2020) A comprehensive review on material selection for polymer matrix composites subjected to impact load. Def Technol. https://doi.org/10.1016/j.dt.2020.04.002

    Article  Google Scholar 

  19. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  CAS  Google Scholar 

  20. Punyamurthy R, Sampathkumar D, Ranganagowda RP, Bennehalli B, Badyankal P, Venkateshappa SC (2014) Surface modification of abaca fiber by benzene diazonium chloride treatment and its influence on tensile properties of abaca fiber reinforced polypropylene composites. Cienc e Tecnol Dos Mater 26:142–149. https://doi.org/10.1016/j.ctmat.2015.03.003

    Article  Google Scholar 

  21. Lu T, Liu S, Jiang M, Xu X, Wang Y, Wang Z et al (2014) Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites. Compos Part B Eng 62:191–197. https://doi.org/10.1016/j.compositesb.2014.02.030

    Article  CAS  Google Scholar 

  22. Manalo AC, Wani E, Zukarnain NA, Karunasena W, Lau K (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites. Compos Part B Eng 80:73–83. https://doi.org/10.1016/j.compositesb.2015.05.033

    Article  CAS  Google Scholar 

  23. Sinha AK, Narang HK, Bhattacharya S (2020a) Mechanical properties of hybrid polymer composites: a review. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02517-w

    Article  Google Scholar 

  24. Gironès J, Lopez JP, Vilaseca F, Bayer JR, Herrera-franco PJ, Mutjé P (2011) Biocomposites from Musa textilis and polypropylene: evaluation of flexural properties and impact strength. Comp Sci Tech 71:122–128. https://doi.org/10.1016/j.compscitech.2010.10.012

    Article  CAS  Google Scholar 

  25. Li Z, Shah AR, Prabhakar MN, Songil J (2017) Effect of inorganic fillers and ammonium polyphosphate on the flammability, thermal stability, and mechanical properties of abaca-fabric/vinyl ester composites. Fibers Polym 18:555–562. https://doi.org/10.1007/s12221-017-6859-7

    Article  CAS  Google Scholar 

  26. Agung EH, Sapuan SM, Hamdan MM, Zaman HMDK, Mustofa U (2011) Optimization of the mechanical properties of abaca fibre-reinforced high impact polystyrene (HIPS) composites using box-behnken design of experiments. Polym Polym Compos 19:697–710. https://doi.org/10.1177/096739111101900811

    Article  CAS  Google Scholar 

  27. Bledzki AK, Mamun AA, Faruk O (2007) Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. Express Polym Lett 1:755–762. https://doi.org/10.3144/expresspolymlett.2007.104

    Article  CAS  Google Scholar 

  28. Sinha AK, Narang HK, Bhattacharya S (2017a) Mechanical properties of natural fibre polymer composites. J Polym Eng 37:879–895. https://doi.org/10.1515/polyeng-2016-0362

    Article  CAS  Google Scholar 

  29. Del Río JC, Rodríguez IM, Gutiérrez A (2004) Identification of intact long-chain p-hydroxycinnamate esters in leaf fibers of abaca (Musa textilis) using gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom.https://doi.org/10.1002/rcm.1677

    Article  Google Scholar 

  30. Lacuna-Richman C (2002) The role of abaca (Musa textilis) in the household economy of a forest village. Small-Scale For Econ Manag Policy 1:93–101. https://doi.org/10.1007/s11842-002-0007-x

    Article  Google Scholar 

  31. Ahmed SN, Prabhakar MN, Siddaramaiah Song J IL (2018) Influence of silane-modified Vinyl ester on the properties of Abaca fiber reinforced composites. Adv Polym Technol 37:1970–1978. https://doi.org/10.1002/adv.21855

    Article  CAS  Google Scholar 

  32. Bledzki AK, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind Crops Prod 70:91–99. https://doi.org/10.1016/j.indcrop.2015.03.013

    Article  CAS  Google Scholar 

  33. Shibata M, Takachiyo KI, Ozawa K, Yosomiya R, Takeishi H (2002) Biodegradable polyester composites reinforced with short abaca fiber. J Appl Polym Sci 85:129–138. https://doi.org/10.1002/app.10665

    Article  CAS  Google Scholar 

  34. Paglicawan MA, Rodriguez MP, Celorico JR (2020) Thermomechanical properties of woven abaca fiber-reinforced nanocomposites. Polym Compos 41:1763–1773. https://doi.org/10.1002/pc.25495

    Article  CAS  Google Scholar 

  35. Kaliappan P, Kesavan R, Vijaya RB (2017) Investigation on effect of fibre hybridization and orientation on mechanical behaviour of natural fibre epoxy composite. Bull Mater Sci 40:773–782. https://doi.org/10.1007/s12034-017-1420-2

    Article  CAS  Google Scholar 

  36. Sanjay MR, Arpitha GR, Yogesha B (2015) Study on mechanical properties of natural - glass fibre reinforced polymer hybrid composites: a review. Mater Today Proc 2:2959–2967. https://doi.org/10.1016/j.matpr.2015.07.264

    Article  Google Scholar 

  37. Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. ARPN J Eng Appl Sci 76:87–96. https://doi.org/10.1016/j.conbuildmat.2014.11.043

    Article  Google Scholar 

  38. Sood M, Dwivedi G (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt J Pet 27:775–783. https://doi.org/10.1016/j.ejpe.2017.11.005

    Article  Google Scholar 

  39. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368. https://doi.org/10.1016/j.matdes.2012.06.015

    Article  CAS  Google Scholar 

  40. Bledzki A, Gassan J (1999) Composites reinforced with cellulose. Prog Polym Sci 24:221–274. https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  CAS  Google Scholar 

  41. Liu K, Takagi H, Yang Z (2013) Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Compos Part A Appl Sci Manuf 45:14–22. https://doi.org/10.1016/j.compositesa.2012.09.006

    Article  CAS  Google Scholar 

  42. Müssig J, Fischer H, Graupner N, Drieling A (2010) Testing methods for measuring physical and mechanical fibre properties (plant and animal fibres). Ind Appl Nat Fibres Struct Prop Tech Appl. https://doi.org/10.1002/9780470660324.ch13

    Article  Google Scholar 

  43. Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GIN (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A Appl Sci Manuf 90:589–597. https://doi.org/10.1016/j.compositesa.2016.08.025

    Article  CAS  Google Scholar 

  44. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  CAS  Google Scholar 

  45. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  46. Vilaseca F, Valadez-Gonzalez A, Herrera-Franco PJ, Pellach MA, Lopez JP, Mutje P (2010) Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties. Bioresour Technol 101:387–395. https://doi.org/10.1016/j.biortech.2009.07.066

    Article  CAS  Google Scholar 

  47. Bourmaud A, Beaugrand J, Shah DU, Placet V, Baley C (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408. https://doi.org/10.1016/j.pmatsci.2018.05.005

    Article  Google Scholar 

  48. Rahman MR, Huque MM, Islam MN, Hasan M (2009) Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Compos Part A Appl Sci Manuf 40:511–517. https://doi.org/10.1016/j.compositesa.2009.01.013

    Article  CAS  Google Scholar 

  49. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207. https://doi.org/10.1002/pc.20461

    Article  CAS  Google Scholar 

  50. Vijaya Ramnath B, Manickavasagam VM, Elanchezhian C, Vinodh Krishna C, Karthik S, Saravanan K (2014) Determination of mechanical properties of intra-layer abaca–jute–glass fiber reinforced composite. Mater Des 60:643–652. https://doi.org/10.1016/j.matdes.2014.03.061

    Article  Google Scholar 

  51. Joseph S, Sreekala M, Thomas S (2008) Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 110:2305–2314. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  52. Van de Velde K, Baetens E (2001) Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol Mater Eng 286:342–349. https://doi.org/10.1002/1439-2054(20010601)286:6%3c342::AID-MAME342%3e3.0.CO;2-P

    Article  Google Scholar 

  53. Boopalan M, Niranjanaa M, Umapathy MJ (2013) Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos Part B Eng 51:54–57. https://doi.org/10.1016/j.compositesb.2013.02.033

    Article  CAS  Google Scholar 

  54. Zakikhani P, Zahari R, Sultan MTH, Majid DL (2014) Extraction and preparation of bamboo fibre-reinforced composites. Mater Des 63:820–828. https://doi.org/10.1016/j.matdes.2014.06.058

    Article  CAS  Google Scholar 

  55. Jabbar A, Militký J, Wiener J, Javaid MU, Rwawiire S (2016) Tensile, surface and thermal characterization of jute fibres after novel treatments. Indian J Fibre Text Res 41:249–254

    CAS  Google Scholar 

  56. Zhang J, Feng L, Wang D, Zhang R, Liu G, Cheng G (2014) Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment. Bioresour Technol 153:379–382. https://doi.org/10.1016/j.biortech.2013.12.004

    Article  CAS  Google Scholar 

  57. Malenab RAJ, Ngo JPS, Promentilla MAB (2017) Chemical treatment of waste abaca for natural fiber-Reinforced geopolymer composite. Materials (Basel). https://doi.org/10.3390/ma10060579

    Article  Google Scholar 

  58. Asim M, Paridah MT, Chandrasekar M, Shahroze RM, Jawaid M, Nasir M et al (2020) Thermal stability of natural fibers and their polymer composites. Iran Polym J 29:625–648. https://doi.org/10.1007/s13726-020-00824-6

    Article  CAS  Google Scholar 

  59. Fan M, Naughton A (2016) Mechanisms of thermal decomposition of natural fibre composites. Compos Part B Eng 88:1–10. https://doi.org/10.1016/j.compositesb.2015.10.038

    Article  CAS  Google Scholar 

  60. Sinha AK, Narang HK, Bhattacharya S (2020b) Experimental investigation of surface modified abaca fibre. Mater Sci Forum 978:291–295. https://doi.org/10.4028/www.scientific.net/MSF.978.291

    Article  Google Scholar 

  61. Liu K, Zhang X, Takagi H, Yang Z, Wang D (2014) Effect of chemical treatments on transverse thermal conductivity of unidirectional abaca fiber/epoxy composite. Compos Part A Appl Sci Manuf 66:227–236. https://doi.org/10.1016/j.compositesa.2014.07.018

    Article  CAS  Google Scholar 

  62. Liu K, Takagi H, Osugi R, Yang Z (2012) Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Compos Part A Appl Sci Manuf 43:1234–1241. https://doi.org/10.1016/j.compositesa.2012.02.020

    Article  CAS  Google Scholar 

  63. Nirmal U, Hashim J, Megat Ahmad MMH (2015) A review on tribological performance of natural fibre polymeric composites. Tribol Int 83:77–104. https://doi.org/10.1016/j.triboint.2014.11.003

    Article  CAS  Google Scholar 

  64. Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol 70:854–860. https://doi.org/10.1016/j.compscitech.2010.02.003

    Article  CAS  Google Scholar 

  65. Sinha AK, Narang HK, Bhattacharya S (2017b) Effect of alkali treatment on surface morphology of abaca fibre. Mater Today Proc 4:8993–8996. https://doi.org/10.1016/j.matpr.2017.07.251

    Article  CAS  Google Scholar 

  66. Sinha AK, Bhattacharya S, Narang HK (2019) Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM. Polym Polym Compos 27:597–608. https://doi.org/10.1177/0967391119855843

    Article  CAS  Google Scholar 

  67. Punyamurthy R, Sampathkumar D, Ranganagowda RPG, Bennehalli B, Srinivasa CV (2017) Mechanical properties of abaca fiber reinforced polypropylene composites: effect of chemical treatment by benzenediazonium chloride. J King Saud Univ - Eng Sci 29:289–294. https://doi.org/10.1016/j.jksues.2015.10.004

    Article  Google Scholar 

  68. Tak Lau K, Yan Hung P, Zhu MH, Hui D (2018) Properties of natural fibre composites for structural engineering applications. Compos Part B Eng 136:222–233. https://doi.org/10.1016/j.compositesb.2017.10.038

    Article  CAS  Google Scholar 

  69. Goriparthi BK, Suman KNS, Mohan RN (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf 43:1800–1808. https://doi.org/10.1016/j.compositesa.2012.05.007

    Article  CAS  Google Scholar 

  70. Xiong X, Shen SZ, Alam N, Hua L, Li X, Wan X et al (2018) Mechanical and abrasive wear performance of woven fl ax fabric / polyoxymethylene composites. Wear 414–415:9–20. https://doi.org/10.1016/j.wear.2018.07.010

    Article  CAS  Google Scholar 

  71. Seki Y (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater Sci Eng A 508:247–252. https://doi.org/10.1016/j.msea.2009.01.043

    Article  CAS  Google Scholar 

  72. Cai M, Takagi H, Nakagaito AN, Katoh M, Ueki T, Waterhouse GIN et al (2015) Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind Crops Prod 65:27–35. https://doi.org/10.1016/j.indcrop.2014.11.048

    Article  CAS  Google Scholar 

  73. Suresh Kumar SM, Duraibabu D, Subramanian K (2014) Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des 59:63–69. https://doi.org/10.1016/j.matdes.2014.02.013

    Article  CAS  Google Scholar 

  74. Akhtar MN, Sulong AB, Radzi MKF, Ismail NF, Raza MR, Muhamad N et al (2016) Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Nat Sci Mater Int 26:657–664. https://doi.org/10.1016/j.pnsc.2016.12.004

    Article  CAS  Google Scholar 

  75. Hossain MK, Dewan MW, Hosur M, Jeelani S (2011) Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Compos Part B Eng 42:1701–1707. https://doi.org/10.1016/j.compositesb.2011.03.010

    Article  CAS  Google Scholar 

  76. Iucolano F, Caputo D, Leboffe F, Liguori B (2015) Mechanical behavior of plaster reinforced with abaca fibers. Constr Build Mater 99:184–191. https://doi.org/10.1016/j.conbuildmat.2015.09.020

    Article  Google Scholar 

  77. Hong CK, Hwang I, Kim N, Park DH, Hwang BS, Nah C (2008) Mechanical properties of silanized jute-polypropylene composites. J Ind Eng Chem 14:71–76. https://doi.org/10.1016/j.jiec.2007.07.002

    Article  CAS  Google Scholar 

  78. Richter S, Stromann K, Müssig J (2013) Abacá (Musa textilis) grades and their properties-a study of reproducible fibre characterization and a critical evaluation of existing grading systems. Ind Crops Prod 42:601–612. https://doi.org/10.1016/j.indcrop.2012.06.025

    Article  Google Scholar 

  79. Jiménez L, Ramos E, De la Torre MJ, Pérez I, Ferrer JL (2008) Bleaching of soda pulp of fibres of Musa textilis nee (abaca) with peracetic acid. Bioresour Technol 99:1474–1480. https://doi.org/10.1016/j.biortech.2007.01.061

    Article  CAS  Google Scholar 

  80. Armecin RB, Seco MHP, Caintic PS, Milleza EJM (2005) Effect of leguminous cover crops on the growth and yield of abaca (Musa textilis Nee). Ind Crops Prod 21:317–323. https://doi.org/10.1016/j.indcrop.2004.04.028

    Article  Google Scholar 

  81. Armecin RB, Coseco WC (2012) Abaca (Musa textilis Nee) allometry for above-ground biomass and fiber production. Biomass Bioenerg 46:181–189. https://doi.org/10.1016/j.biombioe.2012.09.004

    Article  Google Scholar 

  82. Shalwan A, Yousif BF (2013) In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24. https://doi.org/10.1016/j.matdes.2012.07.014

    Article  CAS  Google Scholar 

  83. George G, Tomlal Jose E, Jayanarayanan K, Nagarajan ER, Skrifvars M, Joseph K (2012) Novel bio-commingled composites based on jute/polypropylene yarns: effect of chemical treatments on the mechanical properties. Compos Part A Appl Sci Manuf 43:219–230. https://doi.org/10.1016/j.compositesa.2011.10.011

    Article  CAS  Google Scholar 

  84. Mahjoub R, Yatim JM, Mohd Sam AR, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113. https://doi.org/10.1016/j.conbuildmat.2014.01.036

    Article  Google Scholar 

  85. Arju SN, Afsar AM, Das DK, Khan MA (2014) Role of reactive dye and chemicals on mechanical properties of jute fabrics polypropylene composites. Procedia Eng 90:199–205. https://doi.org/10.1016/j.proeng.2014.11.837

    Article  CAS  Google Scholar 

  86. Ray D, Sarkar BK, Rana AK, Bose NR (2001) Mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos Part A Appl Sci Manuf 32:119–127. https://doi.org/10.1016/S1359-835X(00)00101-9

    Article  CAS  Google Scholar 

  87. Adeniyi AG, Onifade DV, Ighalo JO, Adeoye AS (2019) A review of coir fiber reinforced polymer composites. Compos Part B Eng 176:107305. https://doi.org/10.1016/j.compositesb.2019.107305

    Article  CAS  Google Scholar 

  88. Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A Appl Sci Manuf 56:280–289. https://doi.org/10.1016/j.compositesa.2013.10.014

    Article  CAS  Google Scholar 

  89. Sinha AK, Narang HK, Bhattacharya S (2018a) Evaluation of bending strength of abaca reinforced polymer composites. Mater Today Proc 5:7284–7288. https://doi.org/10.1016/j.matpr.2017.11.396

    Article  CAS  Google Scholar 

  90. Sinha AK, Narang HK, Bhattacharya S (2020c) A fuzzy logic approach for modelling and prediction of mechanical properties of hybrid abaca-reinforced polymer composite. J Brazilian Soc Mech Sci Eng 42:282. https://doi.org/10.1007/s40430-020-02377-4

    Article  CAS  Google Scholar 

  91. Shubhra QTH, Alam AKMM, Quaiyyum MA (2013) Mechanical properties of polypropylene composites: a review. J Thermoplast Compos Mater 26:362–391. https://doi.org/10.1177/0892705711428659

    Article  CAS  Google Scholar 

  92. Doan TTL, Brodowsky H, Mäder E (2012) Jute fibre/epoxy composites: Surface properties and interfacial adhesion. Compos Sci Technol 72:1160–1166. https://doi.org/10.1016/j.compscitech.2012.03.025

    Article  CAS  Google Scholar 

  93. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42:856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

    Article  CAS  Google Scholar 

  94. Bajracharya RM, Manalo AC, Karunasena W, Lautak K (2014) An overview of mechanical properties and durability of glass-fibre reinforced recycled mixed plastic waste composites. Mater Des 62:98–112. https://doi.org/10.1016/j.matdes.2014.04.081

    Article  CAS  Google Scholar 

  95. Amir N, Abidin KAZ, Shiri FBM (2017) Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite. Procedia Eng 184:573–580. https://doi.org/10.1016/j.proeng.2017.04.140

    Article  CAS  Google Scholar 

  96. Wu CM, Lai WY, Wang CY (2016) Effects of surface modification on the mechanical properties of flax/β-polypropylene composites. Materials (Basel) 9:1–11. https://doi.org/10.3390/ma9050314

    Article  CAS  Google Scholar 

  97. Ibrahim ID, Jamiru T, Sadiku RE, Kupolati WK, Agwuncha SC (2017) Dependency of the mechanical properties of sisal fiber reinforced recycled polypropylene composites on fiber surface treatment, fiber content and nanoclay. J Polym Environ 25:427–434. https://doi.org/10.1007/s10924-016-0823-2

    Article  CAS  Google Scholar 

  98. Sallih N, Lescher P, Bhattacharyya D (2014) Factorial study of material and process parameters on the mechanical properties of extruded kenaf fibre/polypropylene composite sheets. Compos Part A Appl Sci Manuf 61:91–107. https://doi.org/10.1016/j.compositesa.2014.02.014

    Article  CAS  Google Scholar 

  99. Gironès J, Lopez JP, Vilaseca F, Bayer R, Herrera-Franco PJ, Mutjé P (2011) Biocomposites from Musa textilis and polypropylene: evaluation of flexural properties and impact strength. Compos Sci Technol 71:122–128. https://doi.org/10.1016/j.compscitech.2010.10.012

    Article  CAS  Google Scholar 

  100. Banjare J, Sahu YK, Agrawal A, Satapathy A (2014) Physical and thermal characterization of red mud reinforced epoxy composites: an experimental investigation. Procedia Mater Sci 5:755–763. https://doi.org/10.1016/j.mspro.2014.07.325

    Article  CAS  Google Scholar 

  101. Vijayakumar S, Nilavarasan T, Usharani R, Karunamoorthy L (2014) Mechanical and microstructure characterization of coconut spathe fibers and kenaf bast fibers reinforced epoxy polymer matrix composites. Procedia Mater Sci 5:2330–2337. https://doi.org/10.1016/j.mspro.2014.07.476

    Article  CAS  Google Scholar 

  102. Dalbehera S, Acharya SK (2015) Effect of cenosphere addition on erosive wear behaviour of jute-glass reinforced composite using taguchi experimental design. Mater Today Proc 2:2389–2398. https://doi.org/10.1016/j.matpr.2015.07.176

    Article  Google Scholar 

  103. Anand P, Rajesh D, Senthil Kumar M, Saran Raj I (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite. J Polym Res. https://doi.org/10.1007/s10965-018-1494-6

    Article  Google Scholar 

  104. Jawaid M, Abdul Khalil HPS, Hassan A, Dungani R, Hadiyane A (2013) Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos Part B Eng 45:619–624. https://doi.org/10.1016/j.compositesb.2012.04.068

    Article  CAS  Google Scholar 

  105. Kikuchi T, Tani Y, Takai Y, Goto A, Hamada H (2014) Mechanical properties of jute composite by spray up fabrication method. Energy Procedia 56:289–297. https://doi.org/10.1016/j.egypro.2014.07.160

    Article  CAS  Google Scholar 

  106. Narayan J, Bijwe J, Pandey RK (2019) Optimization of the amount of short glass fi bers for superior wear performance of PAEK composites. Compos Part A 116:158–168. https://doi.org/10.1016/j.compositesa.2018.10.034

    Article  CAS  Google Scholar 

  107. Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B Eng 68:200–206. https://doi.org/10.1016/j.compositesb.2014.08.032

    Article  CAS  Google Scholar 

  108. Memon A, Nakai A (2013) Fabrication and mechanical properties of jute spun yarn/PLA unidirection composite by compression molding. Energy Procedia 34:830–838. https://doi.org/10.1016/j.egypro.2013.06.819

    Article  CAS  Google Scholar 

  109. Arumuga Prabu V, Uthayakumar M, Manikandan V, Rajini N, Jeyaraj P (2014) Influence of redmud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites. Mater Des 64:270–279. https://doi.org/10.1016/j.matdes.2014.07.020

    Article  CAS  Google Scholar 

  110. Mulinari DR, Baptista CARP, Souza JVC, Voorwald HJC (2011) Mechanical properties of coconut fibers reinforced polyester composites. Procedia Eng 10:2074–2079. https://doi.org/10.1016/j.proeng.2011.04.343

    Article  CAS  Google Scholar 

  111. Pantamanatsopa P, Ariyawiriyanan W, Meekeaw T, Suthamyong R, Arrub K, Hamada H (2014) Effect of modified jute fiber on mechanical properties of Green rubber composite. Energy Procedia 56:641–647. https://doi.org/10.1016/j.egypro.2014.07.203

    Article  CAS  Google Scholar 

  112. Cavatorta MP (2007) A comparative study of the fatigue and post-fatigue behavior of carbon-glass/epoxy hybrid RTM and hand lay-up composites. J Mater Sci 42:8636–8644. https://doi.org/10.1007/s10853-007-1847-8

    Article  CAS  Google Scholar 

  113. Sèbe G, Cetin NS, Hill CAS, Hughes M (2000) RTM hemp fibre-reinforced polyester composites. Appl Compos Mater 7:341–349. https://doi.org/10.1023/A:1026538107200

    Article  Google Scholar 

  114. Indira KN, Jyotishkumar P, Thomas S (2012) Thermal stability and degradation of banana fibre/PF composites fabricated by RTM. Fibers Polym 13:1319–1325. https://doi.org/10.1007/s12221-012-1319-x

    Article  CAS  Google Scholar 

  115. Robertson FC (1988) Resin transfer moulding of aerospace resins - A review. Br Polym J 20:417–429. https://doi.org/10.1002/pi.4980200506

    Article  CAS  Google Scholar 

  116. Biswas S, Satapathy A (2010) A comparative study on erosion characteristics of red mud filled bamboo-epoxy and glass-epoxy composites. Mater Des 31:1752–1767. https://doi.org/10.1016/j.matdes.2009.11.021

    Article  CAS  Google Scholar 

  117. Vijaya Ramnath B, Junaid Kokan S, Niranjan Raja R, Sathyanarayanan R, Elanchezhian C, Prasada Rajendra et al (2013) Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Des 51:357–366. https://doi.org/10.1016/j.matdes.2013.03.102

    Article  CAS  Google Scholar 

  118. Punyamurthy R, Sampathkumar D, Bennehalli B, Ranganagowda RP, Badyankal vasudeva P, Venkateshappa SC (2014) Abaca fiber reinforced hybrid composites. Int J Appl Eng Res 9:20273–20286

    Google Scholar 

  119. Sinha AK, Narang HK, Bhattacharya S (2018b) Tensile strength of abaca epoxy laminated composites. Mater. Today Proc 5:27861–27864. https://doi.org/10.1016/j.matpr.2018.10.024

    Article  CAS  Google Scholar 

  120. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A Appl Sci Manuf 40:404–412. https://doi.org/10.1016/j.compositesa.2009.01.002

    Article  CAS  Google Scholar 

  121. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409. https://doi.org/10.1016/j.polymdegradstab.2004.04.026

    Article  CAS  Google Scholar 

  122. Liu B, Bickerton S, Advani SG (1996) Modelling and simulation of resin transfer moulding (RTM)-gate control, venting and dry spot prediction. Compos Part A 27:135–141. https://doi.org/10.1016/1359-835X(95)00012-Q

    Article  Google Scholar 

  123. Kumar BP, Venkataramaiah P, Ganesh JS (2019) Optimization of process parameters in injection moulding of a polymer composite product by using Gra. Mater Today Proc 18:4637–4647. https://doi.org/10.1016/j.matpr.2019.07.448

    Article  CAS  Google Scholar 

  124. Ariffin A, Ahmad MSB (2011) Review: single screw extruder in particulate filler composite. Polym - Plast Technol Eng 50:395–403. https://doi.org/10.1080/03602559.2010.543228

    Article  CAS  Google Scholar 

  125. Badrinath R, Senthilvelan T (2014) Comparative investigation on mechanical properties of banana and sisal reinforced polymer based composites. Procedia Mater Sci 5:2263–2272. https://doi.org/10.1016/j.mspro.2014.07.444

    Article  CAS  Google Scholar 

  126. Suppakarn N, Jarukumjorn K (2009) Mechanical properties and flammability of sisal/PP composites: effect of flame retardant type and content. Compos Part B Eng 40:613–618. https://doi.org/10.1016/j.compositesb.2009.04.005

    Article  CAS  Google Scholar 

  127. Ramesh M, Palanikumar K, Reddy KH (2013) Comparative evaluation on properties of hybrid glass fiber- sisal/jute reinforced epoxy composites. Procedia Eng 51:745–750. https://doi.org/10.1016/j.proeng.2013.01.106

    Article  CAS  Google Scholar 

  128. Arthanarieswaran VP, Kumaravel A, Kathirselvam M (2014) Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Mater Des 64:194–202. https://doi.org/10.1016/j.matdes.2014.07.058

    Article  CAS  Google Scholar 

  129. Shalwan A, Yousif BF (2014) Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Mater Des 59:264–273. https://doi.org/10.1016/j.matdes.2014.02.066

    Article  CAS  Google Scholar 

  130. Biswas S, Satapathy A (2009) Tribo-performance analysis of red mud filled glass-epoxy composites using Taguchi experimental design. Mater Des 30:2841–2853. https://doi.org/10.1016/j.matdes.2009.01.018

    Article  CAS  Google Scholar 

  131. He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos 37:108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010

    Article  CAS  Google Scholar 

  132. Bisaria H, Gupta MK, Shandilya P, Srivastava RK (2015) Effect of fibre length on mechanical properties of randomly oriented short jute fibre reinforced epoxy composite. Mater Today Proc 2:1193–1199. https://doi.org/10.1016/j.matpr.2015.07.031

    Article  Google Scholar 

  133. Amuthakkannan P, Manikandan V, Winowlin Jappes JT, Uthayakumar M (2013) Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Mater Phys Mech 16:107–117

    CAS  Google Scholar 

  134. Srinivasan VS, Rajendra Boopathy S, Sangeetha D, Vijaya RB (2014) Evaluation of mechanical and thermal properties of banana-flax based natural fibre composite. Mater Des 60:620–627. https://doi.org/10.1016/j.matdes.2014.03.014

    Article  CAS  Google Scholar 

  135. Retnam BSJ, Sivapragash M, Pradeep P (2014) Effects of fibre orientation on mechanical properties of hybrid bamboo/glass fibre polymer composites. Bull Mater Sci 37:1059–1064. https://doi.org/10.1007/s12034-014-0045-y

    Article  CAS  Google Scholar 

  136. Ramesh M, Nijanthan S (2016) Mechanical property analysis of kenaf-glass fibre reinforced polymer composites using finite element analysis. Bull Mater Sci 39:147–157. https://doi.org/10.1007/s12034-015-1129-z

    Article  CAS  Google Scholar 

  137. Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2015) Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites. Mater Des 67:173–179. https://doi.org/10.1016/j.matdes.2014.11.024

    Article  CAS  Google Scholar 

  138. Karaduman Y, Sayeed MMA, Onal L, Rawal A (2014) Viscoelastic properties of surface modified jute fiber/polypropylene nonwoven composites. Compos Part B Eng 67:111–118. https://doi.org/10.1016/j.compositesb.2014.06.019

    Article  CAS  Google Scholar 

  139. Negawo TA, Polat Y, Buyuknalcaci FN, Kilic A, Saba N, Jawaid M (2019) Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fi bers reinforced unsaturated polyester composites. Compos Struct 207:589–597. https://doi.org/10.1016/j.compstruct.2018.09.043

    Article  Google Scholar 

  140. Kabir MM, Wang H, Aravinthan T, Cardona F, Lau K-T 2011 Effects of Natural Fibre Surface on Composite Properties: A Review. Energy Environ Sustain 94–99.

  141. Joseph K, Varghese S, Kalaprasad G, Thomas S, Prasannakumari L, Koshy P et al (1996) Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. Eur Polym J 32:1243–1250. https://doi.org/10.1016/S0014-3057(96)00051-1

    Article  CAS  Google Scholar 

  142. Monette L, Anderson MP, Grest GS (1993) The meaning of the critical length concept in composites: Study of matrix viscosity and strain rate on the average fiber fragmentation length in short-fiber polymer composites. Polym Compos 14:101–115. https://doi.org/10.1002/pc.750140204

    Article  CAS  Google Scholar 

  143. Liu K, Yang Z, Takagi H (2014) Anisotropic thermal conductivity of unidirectional natural abaca fiber composites as a function of lumen and cell wall structure. Compos Struct 108:987–991. https://doi.org/10.1016/j.compstruct.2013.10.036

    Article  Google Scholar 

  144. Badyankal PV, Manjunatha TS, Vaggar GB, Praveen KC (2020) Compression and water absorption behaviour of banana and sisal hybrid fiber polymer composites. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.695

    Article  Google Scholar 

  145. Balan GS, Ravichandran M (2019) Study of moisture absorption characteristics of jute fiber reinforced waste plastic filled polymer composite. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.11.260

    Article  Google Scholar 

  146. Fang H, Zhang Y, Deng J, Rodrigue D (2013) Effect of fiber treatment on the water absorption and mechanical properties of hemp fiber/polyethylene composites. J Appl Polym Sci 127:942–949. https://doi.org/10.1002/app.37871

    Article  CAS  Google Scholar 

  147. Zainudin ES, Yan LH, Haniffah WH, Jawaid M, Alothman OY (2014) Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym Compos 35:1418–1428. https://doi.org/10.1002/pc.22794

    Article  CAS  Google Scholar 

  148. Ray K, Patra H, Swain AK, Parida B, Mahapatra S, Sahu A et al (2020) Glass/jute/sisal fiber reinforced hybrid polypropylene polymer composites: fabrication and analysis of mechanical and water absorption properties. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.964

    Article  Google Scholar 

  149. Arjmandi R, Ismail A, Hassan A, Abu BA (2017) Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Constr Build Mater 152:484–493. https://doi.org/10.1016/j.conbuildmat.2017.07.052

    Article  CAS  Google Scholar 

  150. Rahman MZ, Jayaraman K, Mace BR (2018) Impact energy absorption of flax fiber-reinforced polypropylene composites. Polym Compos 39:4165–4175. https://doi.org/10.1002/pc.24486

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to National Institute of Technology Raipur for providing platform for this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnivesh Kumar Sinha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, A.K., Bhattacharya, S. & Narang, H.K. Abaca fibre reinforced polymer composites: a review. J Mater Sci 56, 4569–4587 (2021). https://doi.org/10.1007/s10853-020-05572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05572-9

Navigation