Skip to main content

Advertisement

Log in

Zinc slow-release systems for maize using biodegradable PBAT nanofibers obtained by solution blow spinning

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc is one of the most important micronutrients used in agriculture, especially in tropical soils that are Zn-deficient and thus adsorb Zn applied from fertilizer, making it less available to plants, a problem that causes plant deficiencies. Therefore, slow-release systems are an alternative to minimize the sorption process of micronutrients in soil and ensure their availability to plants. In this work, micronutrient delivery systems comprised of Zn-loaded poly(butylene adipate‐co‐terephthalate) (PBAT) nanofibers were prepared by solution blow spinning (SBS). Scanning electron microscopy (SEM) results showed that by controlling process variables such as Zn content, air pressure and polymer concentration, PBAT nanofibers with diameters ranging from 306 to 380 nm were produced. Nanofibers properties were also studied by x-ray diffraction (XRD) and thermal analyses (TGA and DSC). Zinc addition reduced both the crystallinity and thermal properties of the nanofibers. The Zn release profiles in water were much slower in comparison with the control (ZnSO4) fertilizer. Maize (Zea mays) with and without slow-release systems were cultivated to assess their effect on plant nutrition and shoot yield. Nanofibers were efficient in releasing Zn in order to meet its nutritional demands. Zinc application via nanofiber promoted dry mass production similar to the control, even at the lowest doses applied, which helped increase Zn availability in soil. Results demonstrated that the spun PBAT nanofibers slowly released Zn to the soil in a controlled fashion, demonstrating that the Zn release systems developed can be used as a promising tool to improve the efficiency of fertilizers in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17. https://doi.org/10.1007/s11104-007-9466-3

    Article  CAS  Google Scholar 

  2. Kabiri S, Degryse F, Tran DNH et al (2017) Graphene oxide: a new carrier for slow release of plant micronutrients. ACS Appl Mater Interfaces 9:43325–43335. https://doi.org/10.1021/acsami.7b07890

    Article  CAS  Google Scholar 

  3. Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:907–927. https://doi.org/10.4067/S0718-95162013005000072

    Article  Google Scholar 

  4. Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262. https://doi.org/10.1007/s40003-014-0113-y

    Article  CAS  Google Scholar 

  5. Priyanka N, Geetha N, Ghorbanpour M, Venkatachalam P (2019) Role of engineered zinc and copper oxide nanoparticles in promoting plant growth and yield: present status and future prospects. In: Ghorbanpour M, Wani SH (eds) Advances in Phytonanotechnology, 1st edn. Elsevier Inc, Academic Press, pp 183–201

    Chapter  Google Scholar 

  6. Cakmak I, McLaughlin MJ, White P (2017) Zinc for better crop production and human health. Plant Soil 411:1–4. https://doi.org/10.1007/s11104-016-3166-9

    Article  CAS  Google Scholar 

  7. Monreal CM, Derosa M, Mallubhotla SC et al (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52:423–437. https://doi.org/10.1007/s00374-015-1073-5

    Article  CAS  Google Scholar 

  8. Mattiello EM, Da Silva RC, Degryse F et al (2017) Sulfur and zinc availability from co-granulated zn-enriched elemental sulfur fertilizers. J Agric Food Chem 65:1108–1115. https://doi.org/10.1021/acs.jafc.6b04586

    Article  CAS  Google Scholar 

  9. He X, Deng H, Hwang H (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21. https://doi.org/10.1016/j.jfda.2018.12.002

    Article  CAS  Google Scholar 

  10. Kim D-Y, Kadam A, Shinde S et al (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98:849–864. https://doi.org/10.1002/jsfa.8749

    Article  CAS  Google Scholar 

  11. Kopittke PM, Lombi E, Wang P et al (2019) Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ Sci Nano 6:3513–3524. https://doi.org/10.1039/c9en00971j

    Article  CAS  Google Scholar 

  12. Daristotle JL, Behrens AM, Sandler AD, Kofinas P (2016) A review of the fundamental principles and applications of solution blow spinning. ACS Appl Mater Interfaces 8:34951–34963. https://doi.org/10.1021/acsami.6b12994

    Article  CAS  Google Scholar 

  13. Medeiros ES, Glenn GM, Klamczynski AP et al (2009) Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 113:2322–2330. https://doi.org/10.1002/app.30275

    Article  CAS  Google Scholar 

  14. Souza MA, Oliveira JE, Medeiros ES et al (2015) Controlled release of linalool using nanofibrous membranes of poly(lactic acid) obtained by electrospinning and solution blow spinning: a comparative study. J Nanosci Nanotechnol 15:5628–5636. https://doi.org/10.1166/jnn.2015.9692

    Article  CAS  Google Scholar 

  15. Kolbasov A, Sinha-Ray S, Joijode A et al (2016) Industrial-scale solution blowing of soy protein nanofibers. Ind Eng Chem Res 55:323–333. https://doi.org/10.1021/acs.iecr.5b04277

    Article  CAS  Google Scholar 

  16. Medeiros ELG, Braz AL, Porto IJ et al (2016) Porous bioactive nanofibers via cryogenic solution blow spinning and their formation into 3d macroporous scaffolds. ACS Biomater Sci Eng 2:1442–1449. https://doi.org/10.1021/acsbiomaterials.6b00072

    Article  CAS  Google Scholar 

  17. Oliveira JE, Mattoso LHC, Orts WJ, Medeiros ES (2013) Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: a comparative study. Adv Mater Sci Eng 2013:1–14. https://doi.org/10.1155/2013/409572

    Article  Google Scholar 

  18. Oliveira JE, Moraes EA, Marconcini JM et al (2013) Properties of poly(lactic acid) and poly(ethylene oxide) solvent polymer mixtures and nanofibers made by solution blow spinning. J Appl Polym Sci 129:3672–3681. https://doi.org/10.1002/app.39061

    Article  CAS  Google Scholar 

  19. da Silva Parize DD, de Oliveira JE, Foschini MM, Marconcini JM, Mattoso LHC (2016) Poly (lactic acid) fibers obtained by solution blow spinning: effect of a greener solvent on the fiber diameter. J Appl Polym Sci 133:43379. https://doi.org/10.1002/app.43379

    Article  CAS  Google Scholar 

  20. Sett S, Stephansen K, Yarin AL (2016) Solution-blown nanofiber mats from fish sarcoplasmic protein. Polymer (Guildf) 93:78–87. https://doi.org/10.1016/j.polymer.2016.04.019

    Article  CAS  Google Scholar 

  21. Sinha-Ray S, Zhang Y, Yarin AL et al (2011) Solution blowing of soy protein fibers. Biomacromolecules 12:1257–2363. https://doi.org/10.1021/bm200438v

    Article  CAS  Google Scholar 

  22. Zumstein MT, Schintlmeister A, Nelson TF et al (2018) Biodegradation of synthetic polymers in soils: tracking carbon into co 2 and microbial biomass. Sci Adv. https://doi.org/10.1126/sciadv.aas9024

    Article  Google Scholar 

  23. Nair NR, Sekhar VC, Nampoothiri KM, Pandey A (2017) Biodegradation of biopolymers. In: Current developments in biotechnology and bioengineering. Elsevier, New York, pp 739–755

    Chapter  Google Scholar 

  24. Saadi Z, Cesar G, Bewa H, Benguigui L (2013) Fungal Degradation of poly(Butylene Adipate-Co-Terephthalate) in soil and in compost. J Polym Environ 21:893–901. https://doi.org/10.1007/s10924-013-0582-2

    Article  CAS  Google Scholar 

  25. Brümmer G, Tiller KG, Herms U, Clayton PM (1983) Adsorption-desorption and/or precipitation-dissolution processes of zinc in soils. Geoderma 31:337–354. https://doi.org/10.1016/0016-7061(83)90045-9

    Article  Google Scholar 

  26. Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. International Zinc Association (IZA) and International Fertilizer Industry Association (IFA), Brussels and Paris

    Google Scholar 

  27. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22. https://doi.org/10.1007/s10311-016-0600-4

    Article  CAS  Google Scholar 

  28. Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684. https://doi.org/10.1038/s41565-018-0131-1

    Article  CAS  Google Scholar 

  29. Raliya R, Saharan V, Dimkpa C, Biswas P (2018) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66:6487–6503. https://doi.org/10.1021/acs.jafc.7b02178

    Article  CAS  Google Scholar 

  30. Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37. https://doi.org/10.1016/j.polymertesting.2015.02.005

    Article  CAS  Google Scholar 

  31. Zehetmeyer G, Meira SMM, Scheibel JM et al (2017) Biodegradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers. Polym Bull 74:3243–3268. https://doi.org/10.1007/s00289-016-1896-8

    Article  CAS  Google Scholar 

  32. Silva FC (2009) Manual de análises químicas de solos, plantas e fertilizantes, 2nd edn. Empresa Brasileira de Pesquisa Agropecuária, Embrapa Solos, Brasília, DF

    Google Scholar 

  33. Malavolta E (1980) Elementos de nutrição mineral das plantas. Agronômica Ceres, São Paulo

    Google Scholar 

  34. Novais RF, Neves JCL, Barros NF (1991) Ensaio em ambiente controlado. In: Oliveira AJ, Garrido WE, Araújo JD, Lourenço S (eds) Métodos de pesquisa em fertilidade do solo. Embrapa-SEA, Brasília, pp 189–253

    Google Scholar 

  35. Malavolta E, Vitti GC, de Oliveira SA (1997) Avaliação do estado nutricional das plantas-Princípios e aplicações, 2nd edn. Associação Brasileira para Pesquisa da Potassa e do Fosfato, Piracicaba

    Google Scholar 

  36. R Core Team (2017) The R project for statistical computing. R Found Stat Comput Vienna, Austria

    Google Scholar 

  37. Oliveira JE, Moraes EA, Costa RGF et al (2011) Nano and submicrometric fibers of poly(D, L-lactide) obtained by solution blow spinning: process and solution variables. J Appl Polym Sci 122:3396–3405. https://doi.org/10.1002/app.34410

    Article  CAS  Google Scholar 

  38. Bonan RF, Bonan PRF, Batista AUD et al (2015) In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mater Sci Eng C 48:372–377. https://doi.org/10.1016/j.msec.2014.12.021

    Article  CAS  Google Scholar 

  39. dos Santos SA, Rodrigues BVM, Oliveira FC et al (2019) Characterization and in vitro and in vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J Polym Res 26:53. https://doi.org/10.1007/s10965-019-1706-8

    Article  CAS  Google Scholar 

  40. Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. J Polym Sci Part A Polym Chem 40:4141–4157. https://doi.org/10.1002/pola.10501

    Article  CAS  Google Scholar 

  41. Sangroniz A, Sangroniz L, Aranburu N et al (2018) Blends of biodegradable poly(butylene adipate-co-terephthalate) with poly(hydroxi amino ether) for packaging applications: miscibility, rheology and transport properties. Eur Polym J 105:348–358. https://doi.org/10.1016/j.eurpolymj.2018.06.016

    Article  CAS  Google Scholar 

  42. Huang C-C, Chang F-C (1997) Reactive compatibilization of polymer blends of poly(butylene terephthalate) (PBT) and polyamide-6,6 (PA66): 1. Rheol Therm Prop Polym (Guildf) 38:2135–2141. https://doi.org/10.1016/S0032-3861(96)00740-9

    Article  CAS  Google Scholar 

  43. Pudukudy M, Yaakob Z, Rajendran R, Kandaramath T (2014) Photodegradation of methylene blue over novel 3D ZnO microflowers with hexagonal pyramid-like petals. React Kinet Mech Catal 112:527–542. https://doi.org/10.1007/s11144-014-0703-5

    Article  CAS  Google Scholar 

  44. Feng S, Wu D, Liu H et al (2014) Crystallization and creep of the graphite nanosheets based poly(butylene adipate-co-terephthalate) biocomposites. Thermochim Acta 587:72–80. https://doi.org/10.1016/j.tca.2014.04.020

    Article  CAS  Google Scholar 

  45. Yang F, Qiu Z (2011) Preparation, crystallization, and properties of biodegradable poly(butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites. J Appl Polym Sci 119:1426–1434. https://doi.org/10.1002/app.32619

    Article  CAS  Google Scholar 

  46. Brandelero RPH, Grossmann MV, Yamashita F (2013) Hidrofilicidade de filmes de amido/poli(butileno adipato co-tereftalato) (pbat) adicionados de tween 80 e óleo de soja. Polimeros 23:270–275. https://doi.org/10.1590/S0104-14282013005000011

    Article  CAS  Google Scholar 

  47. Borges ID, Von Pinho RG, de Pereira JL, AR, (2009) Micronutrients accumulation at different maize development stages. Ciência e Agrotecnologia 33:1018–1025. https://doi.org/10.1590/s1413-70542009000400011

    Article  CAS  Google Scholar 

  48. Büll L (1993) Nutrição mineral do milho. In: Büll LT, Cantarella H (eds) Cultura do Milho: fatores que afetam a produtividade. Associação Brasileira para Pesquisa da Potassa e do Fosfato, Piracicaba, pp 63–145

    Google Scholar 

  49. Gott RM, de Aquino LA, de Carvalho AMX et al (2014) Índices diagnósticos para interpretação de análise foliar do milho. Rev Bras Eng Agric e Ambient 18:1110–1115. https://doi.org/10.1590/1807-1929/agriambi.v18n11p1110-1115

    Article  Google Scholar 

  50. Ribeiro AC, Guimarães PTG, Alvarez VH (1999) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5a aproximação. Comissão de Fertilidadde do solo do estado de Minas Gerais, Viçosa

    Google Scholar 

  51. Jordão CP, Carari DM, Pereira WL et al (2010) Adsorption of Zn(II) in oxisols as affected by selective removal of soil fractions. Int J Environ Stud 67:879–897. https://doi.org/10.1080/00207233.2010.527123

    Article  CAS  Google Scholar 

  52. Casagrande JC, Soares MR, Mouta ER (2008) Zinc adsorption in highly weathered soils. Pesqui Agropecu Bras 43:131–139. https://doi.org/10.1590/S0100-204X2008000100017

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by FAPEMIG (APQ-01505-15, APQ-00906-17), CNPq (402287/2013-4, 302044/2015-9, 403357/2016-0, 302469/2018-4, 140976/2018-3), CAPES, and FINEP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juliano E. Oliveira or Eliton S. Medeiros.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 5527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarelli, C.V.L., Lopes, C.M.S., Carneiro, J.S.S. et al. Zinc slow-release systems for maize using biodegradable PBAT nanofibers obtained by solution blow spinning. J Mater Sci 56, 4896–4908 (2021). https://doi.org/10.1007/s10853-020-05545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05545-y

Navigation