Skip to main content
Log in

Aqueous friction behavior of swollen hydrophilic poly(ethylene glycol)-based polyurethane coatings

  • Invited Viewpoint
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The macroscopic friction behavior of water-swollen cross-linked poly(ethylene glycol)-based polyurethane coatings (PEG-based PU coatings) with varying PEG precursor mass is measured against a glass counter surface. Experimental data such as the water uptake and the indentation modulus are used to calculate an accurate value for the molar mass between cross-links Mc, which, in turn, is used for the estimation of the actual coating mesh size ξ. The friction, swelling and indentation data obtained are used to successfully deduce an empirical model for the quantitative description of the aqueous friction behavior of these coatings depending on the mesh size of the coatings and the sliding velocity only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

(adapted from Kurokawa et al. [23])

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wyman P (2012) Coatings for biomedical applications - chapter 1 hydrophilic coatings for biomedical applications in and ex vivo. Woodhead Publishing Limited, New Delhi

    Google Scholar 

  2. Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7:9804–9828

    CAS  Google Scholar 

  3. Chopra AM, Mehta M, Bismuth J, Shapiro M, Fishbein MC, Bridges AG, Vinters HV (2017) Polymer coating embolism from intravascular medical devices - a clinical literature review. Cardiovasc Pathol 30:45–54

    CAS  Google Scholar 

  4. Dellimore KH, Helyer AR, Franklin SE (2013) A scoping review of important urinary catheter induced complications. J Mater Sci Mater Med 24:1825–1835

    CAS  Google Scholar 

  5. Waller L, Jonsson O, Norlen L, Sullivan L (1995) Clean intermittent catheterization in spinal-cord injury patients - long-term follow-up of a hydrophilic low-friction technique. J Urol 153:345–348

    CAS  Google Scholar 

  6. LaPorte RJ (1997) Hydrophilic polymer coatings for medical devices - structure/properties manufacture and applications development. CRC Press LLC, FL

    Google Scholar 

  7. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    CAS  Google Scholar 

  8. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    CAS  Google Scholar 

  9. Devine DM, Geever LM, Higginbotham CL (2005) Drug release from a N-vinylpyrrolidinone/acrylic acid lubricious hydrophilic coating. J Mater Sci 40:3429–3436. https://doi.org/10.1007/s10853-005-0416-2

    Article  CAS  Google Scholar 

  10. Telford AM, James M, Meagher L, Neto C (2010) Thermally cross-linked PNVP films as antifouling coatings for biomedical applications. ACS Appl Mater Interfaces 2:2399–2408

    CAS  Google Scholar 

  11. Hanley P, Dolan F, Higginbotham C, and Tierney M (2007) "Coating for biomedical devices". USA Patent US2007043160A1, 2007

  12. Dias AJAA, Hensen GJE, Belt JW, Rooijmans M, Bond de NHM, and Currie EPK (2007) "Hydrophilic coating comprising a polyelectrolyte". WO Patent WO2007065722A1, 2007

  13. van Bochove B, Rongen JJ, Hannink G, van Tienen TG, Buma P, Grijpma DW (2015) Grafting a lubricious coating onto photo-crosslinked poly(trimethylene carbonate). Polym Adv Technol 26:1428–1432

    Google Scholar 

  14. Militello M (2017) "Lubricious coating for medical device". WO Patent WO2017173114 (A1), 2017

  15. Elton RK (2011) "Hydrophilic coating composition comprising cross-linked polyurethane-based lubricious layers,". USA Patent US 20110144579A1, 2011

  16. Niemczyk A, El Fray M, Franklin SE (2015) Friction behavior of hydrophilic lubricious coatings for medical device applications. Tribol Int 89:54–61

    CAS  Google Scholar 

  17. Bongaerts JHH, Cooper-White JJ, Stokes JR (2009) Low biofouling chitosan-hyaluronic acid multilayers with ultra-low friction coefficients. Biomacromol 10:1287–1294

    CAS  Google Scholar 

  18. Ding X, Yang C, Lim TP, Hsu LY, Engler AC, Hedrick JL, Yang YY (2012) Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 33:6593–6603

    CAS  Google Scholar 

  19. Kim BS, Hrkach JS, Langer R (2000) Biodegradable photo-crosslinked poly(ether-ester) networks for lubricious coatings. Biomaterials 21:259–265

    CAS  Google Scholar 

  20. Nagaoka S, Akashi R (1990) Low-friction hydrophilic surface for medical devices. Biomaterials 11:419–424

    CAS  Google Scholar 

  21. Gong JP (2006) Friction and lubrication of hydrogels—its richness and complexity. Soft Matter 2:544–552

    CAS  Google Scholar 

  22. Spencer ND (2014) Aqueous lubrication - natural and biomimetic approaches. World Scientific Publishing Co Pvt Ltd, Singapore

    Google Scholar 

  23. Kurokawa T, Tominaga T, Katsuyama Y, Kuwabara R, Furukawa H, Osada Y, Gong JP (2005) Elastic-hydrodynamic transition of gel friction. Langmuir 21:8643–8648

    CAS  Google Scholar 

  24. Gong J, Osada Y (1998) Gel friction: a model based on surface repulsion and adsorption. J Chem Phys 109:8062–8068

    CAS  Google Scholar 

  25. Schallamach A (1963) A theory of dynamic rubber friction. Wear 6:375–382

    Google Scholar 

  26. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, NY

    Google Scholar 

  27. Gong JP, Iwasaki Y, Osada Y, Kurihara K, Hamai Y (1999) Friction of gels. 3. friction on solid surfaces. J Phys Chem B 103:6001–6006

    CAS  Google Scholar 

  28. Tominaga T, Takedomi N, Biederman H, Furukawa H, Osada Y, Gong JP (2008) Effect of substrate adhesion and hydrophobicity on hydrogel friction. Soft Matter 4:1033–1040

    CAS  Google Scholar 

  29. Tominaga T, Kurokawa T, Furukawa H, Osada Y, Gong JP (2008) Friction of a soft hydrogel on rough solid substrates. Soft Matter 4:1645–1652

    CAS  Google Scholar 

  30. Kii A, Xu J, Gong JP, Osasa Y, Zhang XM (2001) Heterogeneous polymerization of hydrogels on hydrophobic substrate. J Phys Chem B 105:4565–4571

    CAS  Google Scholar 

  31. Ohsedo Y, Takashina R, Gong JP, Osada Y (2004) Surface friction of hydrogels with well-defined polyelectrolyte brushes. Langmuir 20:6549–6555

    CAS  Google Scholar 

  32. Du M, Zhang Y, Song Y, Zheng Q (2014) Negative velocity dependence of friction for poly(2-Acrylamido-2-methyl propanesulfonic acid) hydrogel sliding against a glass surface in the low-velocity region. J Polym Sci, Part B: Polym Phys 52:765–772

    CAS  Google Scholar 

  33. Kozbial A, Li L (2014) Study on the friction of kappa-carrageenan hydrogels in air and aqueous environments. Mater Sci Eng C Mater Biol Appl 36:173–179

    CAS  Google Scholar 

  34. Uruena JM, Pitenis AA, Nixon RM, Schulze KD, Angelini TE, Sawyer WG (2015) Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology 1:24–29

    Google Scholar 

  35. Pitenis AA, Uruena JM, Cooper AC, Angelini TE, Sawyer WG (2016) Superlubricity in gemini hydrogels. J Tribol-Trans Asme 138:7–9

    Google Scholar 

  36. Dunn AC, Uruena JM, Huo YC, Perry SS, Angelini TE, Sawyer WG (2013) Lubricity of surface hydrogel layers. Tribol Lett 49:371–378

    CAS  Google Scholar 

  37. Dunn AC, Sawyer WG, Angelini TE (2014) Gemini interfaces in aqueous lubrication with hydrogels. Tribol Lett 54:59–66

    CAS  Google Scholar 

  38. Pitenis AA, Uruena JM, Schulze KD, Nixon RM, Dunn AC, Krick BA, Sawyer WG, Angelini TE (2014) Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter 10:8955–8962

    CAS  Google Scholar 

  39. Rudin A (1999) The elements of polymer science and technology. Academic Press, Cambridge

    Google Scholar 

  40. Hild G (1998) Model networks based on endlinking processes - synthesis structure and properties. Prog Polym Sci 23:1019–1149

    CAS  Google Scholar 

  41. Gullapalli RP, Mazzitelli CL (2015) Polyethylene glycols in oral and parenteral formulations-a critical review. Int J Pharm 496:219–239

    CAS  Google Scholar 

  42. “Molecular Modelling Pro,” Version 6.3.3: Norgwyn Montgomery Software Inc., North Wales, PA, 1992

  43. Van Krevelen DW (1990) Properties of polymers. Elsevier, Amsterdam

    Google Scholar 

  44. Hertz H (1882) Über die Berührung fester elastischer Körper. J reine und angewandte Mathematik 92:156–171

    Google Scholar 

  45. Johnson KL (1985) Contact mechanics, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  46. Fishcher-Cripps AC (2004) Nanoindentation, 2nd edn. Springer Science+Business Media, Germany

    Google Scholar 

  47. Canal T, Peppas NA (1989) Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J Biomed Mater Res 23:1183–1193

    CAS  Google Scholar 

  48. Mark JE, Flory PJ (1965) Configuration of polyoxyethylene chain. J American Chem Soc 87:1415

    CAS  Google Scholar 

  49. Cruise GM, Scharp DS, Hubbell JA (1998) Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19:1287–1294

    CAS  Google Scholar 

  50. Zustiak SP, Leach JB (2010) Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromol 11:1348–1357

    CAS  Google Scholar 

  51. Erman B, Mark JE (1997) Structure and properties of rubberlike networks. Oxford University Press Inc, NY

    Google Scholar 

  52. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, NY

    Google Scholar 

  53. Horkay F, McKenna GB (2007) Polymer networks and gels. In: Mark JE (ed) Physical properties of polymers handbook, 2nd edn. Springer Science + Business Media, New York, pp 497–523

    Google Scholar 

  54. Hild G (1997) Interpretation of equilibrium swelling data on model networks using affine and “phantom” network models. Polymer 38:3279–3293

    CAS  Google Scholar 

  55. Saalwächter K, Chassé W, Sommer J-U (2013) Structure and swelling of polymer networks: insights from NMR. Soft Matter 9:6587

    Google Scholar 

  56. Russ T, Brenn R, Geoghegan M (2003) Equilibrium swelling of polystyrene networks by linear polystyrene. Macromolecules 36:127–141

    CAS  Google Scholar 

  57. Valentin JL, Carretero-Gonzalez J, Mora-Barrantes I, Chasse W, Saalwachter K (2008) Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules 41:4717–4729

    CAS  Google Scholar 

  58. Erman B, Flory PJ (1982) Relationships between stress, strain, and molecular constitution of polymer networks - comparison of theory with experiments. Macromolecules 15:806–811

    CAS  Google Scholar 

  59. Albers PTM, van der Ven LGJ, van Benthem RATM, Esteves ACC, de With G (2018) Water swelling behavior of poly(ethylene glycol)-based polyurethane networks. Macromolecules 53:862–874

    Google Scholar 

  60. Miller DR, Macosko CW (1976) New derivation of post gel properties of network polymers. Macromolecules 9:206–211

    CAS  Google Scholar 

  61. Miller DR, Valles EM, Macosko CW (1979) Calculation of molecular-parameters for stepwise polyfunctional polymerization. Polym Eng Sci 19:272–283

    CAS  Google Scholar 

  62. Campise F, Agudelo DC, Acosta RH, Villar MA, Valles EM, Monti GA, Vega DA (2017) Contribution of entanglements to polymer network elasticity. Macromolecules 50:2964–2972

    CAS  Google Scholar 

  63. Gnanou Y, Hild G, Rempp P (1987) Molecular structure and elastic behavior of PEG networks swollen to equilibrium. Macromolecules 20:1662–1671

    CAS  Google Scholar 

  64. Hsu S, Ying C, Zhao F (2013) The nature of friction: a critical assessment. Friction 2:1–26

    Google Scholar 

  65. Vorvolakos K, Chaudhury MK (2003) The effects of molecular weight and temperature on the kinetic friction of silicone rubbers. Langmuir 19:6778–6787

    CAS  Google Scholar 

  66. Persson BNJ, Volokitin AI (2006) Rubber friction on smooth surfaces. European Phys J E 21:69–80

    CAS  Google Scholar 

  67. Grosch KA (1963) "Relation between friction and visco-elastic properties of rubber," Proceedings of the royal society of London series a-mathematical and physical sciences 274, 21

Download references

Acknowledgements

This research was financially supported partially by the Dutch Polymer Institute (DPI), project #780.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gijsbertus de With or A. Catarina C. Esteves.

Additional information

Handling Editor: C. Barry Carter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1240kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albers, P.T.M., Laven, J., van der Ven, L.G.J. et al. Aqueous friction behavior of swollen hydrophilic poly(ethylene glycol)-based polyurethane coatings. J Mater Sci 56, 4485–4499 (2021). https://doi.org/10.1007/s10853-020-05580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05580-9

Navigation