Skip to main content
Log in

Graphene oxide-promoted Ti/PbO2 photoanode with photoelectric synergy effect for efficient photoelectrocatalytic degradation of reactive brilliant blue

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of semiconductor-based photoelectrocatalysts with superior activity is of great importance for water purification. Here, we fabricated graphene oxide (GO)-wrapped Ti/PbO2 photoanodes by combination of electrochemical deposition and electrophoretic deposition process. The as-obtained composite electrodes showed better performance for photoelectrocatalytic (PEC) degradation of reactive brilliant blue KN-R, as compared with that of Ti/PbO2 reference. Experimental results demonstrated that the efficient PEC performance of graphene oxide (GO)-wrapped Ti/PbO2 photoanodes could be ascribed to the low charge transfer resistance, large electrochemical active areas, and high separation efficiency of induced electrons/holes. Furthermore, a significant photoelectric synergy effect can be observed for the graphene oxide (GO)-wrapped Ti/PbO2 photoanodes during the photoelectrocatalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Scheme 1

Similar content being viewed by others

References

  1. Sergi GS, Enric B (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C 31:1–35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005

    Article  CAS  Google Scholar 

  2. Wang Y, Wu Q, Li Y et al (2018) Controlled fabrication of TiO2/C3N4 core–shell nanowire arrays: a visible-light-responsive and environmental-friendly electrode for photoelectrocatalytic degradation of bisphenol A. J Mater Sci 53:11015–11026. https://doi.org/10.1007/s10853-018-2368-3

    Article  CAS  Google Scholar 

  3. Han ZY, Li YJ, Lin X, Wang ZY, Li ZQ, Wang H (2018) Preparation and photoelectrocatalytic performance of Fe2O3/ZnO composite electrode loading on conductive glass. Chem Res Chin U 39(4):771–778. https://doi.org/10.7503/cjcu20170388

    Article  CAS  Google Scholar 

  4. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B 87(3–4):105–145. https://doi.org/10.1016/j.apcatb.2008.09.017

    Article  CAS  Google Scholar 

  5. Li L, Yan J, Wang T, Zhao ZJ, Zhang J, Gong J et al (2015) Sub-10nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun 6:5881. https://doi.org/10.1038/ncomms6881

    Article  Google Scholar 

  6. Wang W, He JJ, Cui FY, Wang C (2015) Preparation of Ag2O/TiO2 nanowires heterojunction and their photocatalytic activity under visible-light irradiation. Chem Res Chin U 36(7):1367–2137. https://doi.org/10.7503/cjcu20150051

    Article  CAS  Google Scholar 

  7. Liang Y (2016) Three-dimensional cage-like Co3O4 structure constructed by nanowires for supercapacitor. Int J Electrochem Sci 11:4092–4109. https://doi.org/10.20964/110451

    Article  CAS  Google Scholar 

  8. Zhao J, Zhu C, Lu J, Hu C, Peng S, Chen T (2014) Electro-catalytic degradation of bisphenol a with modified Co3O4/β-PbO2/Ti electrode. Electrochim Acta 118:169–175. https://doi.org/10.1016/j.electacta.2013.12.005

    Article  CAS  Google Scholar 

  9. Zhong C, Wei K, Han W, Wang L, Sun X, Li J (2013) Electrochemical degradation of tricyclazole in aqueous solution using Ti/SnO2-Sb/PbO2 anode. J Electroanal Chem 705:68–74. https://doi.org/10.1016/j.jelechem.2013.07.027

    Article  CAS  Google Scholar 

  10. Lyu J, Sun G, Zhu L, Ma H, Fu Y (2019) Fabrication of Ti/black TiO2-PbO2 micro/nanostructures with tunable hydrophobic/hydrophilic characteristics and their photoelectrocatalytic performance. J Solid State Electrochem 24:375–387. https://doi.org/10.1007/s10008-019-04433-z

    Article  CAS  Google Scholar 

  11. Li W, Lyu J, Zhou K, Ma H, Fu Y (2020) Fabrication and photoelectrocatalytic performance of C3N4-modified Ti/PbO2 anode with surface hydrophobicity. J Solid State Electrochem 24:577–1585. https://doi.org/10.1007/s10008-020-04657

    Article  Google Scholar 

  12. Yao Y, Li Y, Cui L, Yu N, Dong H (2015) Preparation and photoelectrochemical property of PbO2-TiO2 nanocomposite electrodes. J Electrochem Soc 162(1):E7–E12. https://doi.org/10.1149/2.0441501jes

    Article  CAS  Google Scholar 

  13. Wang XQ, Wu Q, Ma HC, Ma C, Yu ZH, Fu YH (2019) Fabrication of PbO2 tipped Co3O4 nanowires for efficient photoelectrochemical decolorization of dye (reactive brilliant blue KN-R) wastewater. Sol Energy Mater So Cells 191:381–383. https://doi.org/10.1016/j.solmat.2018.12.005

    Article  CAS  Google Scholar 

  14. Yang Y, Cui LL, Li MY, Yao YW (2019) Electrochemical removal of metribuzin in aqueous solution by a novel PbO2/WO3 composite anode: characterization, influencing parameters and degradation pathways. J Taiwan Inst Chem Eng 102:170–181. https://doi.org/10.1016/j.jtice.2019.05.023

    Article  CAS  Google Scholar 

  15. Yao Y, Huang C, Chen X, Wei F, Feng H (2017) Preparation and characterization of a porous structure PbO2-ZrO2 nanocomposite electrode and its application in electrocatalytic degradation of crystal violet. J Electrochem Soc 164(12):E367–E373. https://doi.org/10.1149/2.0161713jes

    Article  CAS  Google Scholar 

  16. Ying M, Tian W, Heng Z (2019) Molecular dynamics simulation of adsorption of methylene blue by graphene oxide. Chem res Chin U 40(12):2534–2541. https://doi.org/10.7503/cjcu20190392

    Article  CAS  Google Scholar 

  17. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Correction: graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:5226–5226. https://doi.org/10.1002/adma.201090156

    Article  CAS  Google Scholar 

  18. Ghawanmeh AA, Ali GA, Algarni H, Sarkar SM, Chong KF (2019) Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res 12:973–990. https://doi.org/10.1007/s12274-019-2300-4

    Article  CAS  Google Scholar 

  19. Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4:6557–6564. https://doi.org/10.1021/nn101781v

    Article  CAS  Google Scholar 

  20. Ranjan P, Agrawal S, Sinha A et al (2018) A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci Rep 8:12007. https://doi.org/10.1038/s41598-018-30613-4

    Article  CAS  Google Scholar 

  21. Kuang Y, Shang J, Zhu T (2020) Photoactivated graphene oxide to enhance photocatalytic reduction of CO2. ACS Appl Mater Interfaces 12:3580–3591. https://doi.org/10.1021/acsami.9b18899

    Article  CAS  Google Scholar 

  22. Wang M, Ju P, Li J, Zhao Y, Han X, Hao Z (2017) Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustain Chem Eng 5:7878–7886. https://doi.org/10.1021/acssuschemeng.7b01386

    Article  CAS  Google Scholar 

  23. Huang Y, Yan C, Guo C, Lu Z, Shi Y, Wang Z (2017) Synthesis of GO-modified Cu2O nanosphere and the photocatalytic mechanism of water splitting for hydrogen production. Int J Hydrog Energy 42:4007–4016. https://doi.org/10.1016/j.ijhydene.2016.10.157

    Article  CAS  Google Scholar 

  24. Gu Y, Chen S, Ren J, Jia YA, Chen C, Komarneni S, Yao X (2018) Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 12:245–253. https://doi.org/10.1021/acsnano.7b05971

    Article  CAS  Google Scholar 

  25. Dong P, Wang Y, Cao B, Xin S, Guo L, Zhang J et al (2013) Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability. Appl Catal B 132–133:45–53. https://doi.org/10.1016/j.apcatb.2012.11.022

    Article  CAS  Google Scholar 

  26. Dong P, Wang Y, Guo L, Liu B, Xin S, Zhang J et al (2012) A facile one-step solvothermal synthesis of graphene/rod-shaped TiO2 nanocomposite and its improved photocatalytic activity. Nanoscale 4(15):4641–4649. https://doi.org/10.1039/C2NR31231J

    Article  CAS  Google Scholar 

  27. Hou GH, Dong PY, Xi XG (2017) WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano 4:539–557. https://doi.org/10.1039/C6EN00478D

    Article  CAS  Google Scholar 

  28. Wang H, Li G, Fakhri A (2020) Fabrication and structural of the Ag2S-MgO/graphene oxide nanocomposites with high photocatalysis and antimicrobial activities. J Photochem Photobiol B 207:111882. https://doi.org/10.1016/j.jphotobiol.2020.111882

    Article  CAS  Google Scholar 

  29. Raja A, Rajasekaran P, Selvakumar K, Arunpandian M, Swaminathan M (2019) Visible active reduced graphene oxide-BiVO4-ZnO ternary photocatalyst for efficient removal of ciprofloxacin. Sep Purif Technol 233:115996. https://doi.org/10.1016/j.seppur.2019.115996

    Article  CAS  Google Scholar 

  30. Bayantong ARB, Shih Y, Dong C et al (2020) Nickel ferrite nanoenabled graphene oxide (NiFe2O4@GO) as photoactive nanocomposites for water treatment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10545-1

    Article  Google Scholar 

  31. Manikandan V, Elancheran R, Revathi P et al (2020) Efficient photocatalytic degradation of crystal violet by using graphene oxide/nickel sulphide nanocomposites. Bull Mater Sci 43:265. https://doi.org/10.1007/s12034-020-02227-y

    Article  CAS  Google Scholar 

  32. Ismael AM, El-Shazly AN, Gaber SE, Rashad MM, Kamel AH, Hassan SSM (2020) Novel TiO2/GO/CuFe2O4 nanocomposite: a magnetic, reusable and visible-light-driven photocatalyst for efficient photocatalytic removal of chlorinated pesticides from wastewater. RSC Adv 10(34806–34814):10. https://doi.org/10.1039/D0RA02874F

    Article  Google Scholar 

  33. Durmus Z, Kurt BZ, Durmus A (2019) Synthesis and characterization of graphene oxide/zinc oxide (GO/ZnO) nanocomposite and its utilization for photocatalytic degradation of basic fuchsin dye. ChemistrySelect 4(1):271–278. https://doi.org/10.1002/slct.201803635

    Article  CAS  Google Scholar 

  34. Qureshi K, Ahmad MZ, Bhatti IA, Zahid M, Nisar J, Iqbal M (2019) Graphene oxide decorated ZnWO4 architectures synthesis, characterization and photocatalytic activity evaluation. J Mol Liq 285:778–789. https://doi.org/10.1016/j.molliq.2019.04.139

    Article  CAS  Google Scholar 

  35. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830. https://doi.org/10.1021/nn901311t

    Article  CAS  Google Scholar 

  36. Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6(1):1–18. https://doi.org/10.4236/graphene.2017.61001

    Article  CAS  Google Scholar 

  37. Dresselhaus MS, Dresselhaus G, Hofmann M (2008) Raman spectroscopy as a probe of graphene and carbon nanotubes. Philos Trans R Soc A 366:231–236. https://doi.org/10.1098/rsta.2007.2155

    Article  CAS  Google Scholar 

  38. Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Liu Z (2010) Can graphene be used as a substrate for Raman enhancement. Nano Lett 10:553–561. https://doi.org/10.1021/nl903414x

    Article  CAS  Google Scholar 

  39. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105. https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  40. Chen X, Wang D, Wang Z, Zhou P, Wu Z, Jiang F (2014) Molybdenum phosphide: a new highly efficient catalyst for the electrochemical hydrogen evolution reaction. Chem Commun 50:11683–11685. https://doi.org/10.1039/C4CC05936K

    Article  CAS  Google Scholar 

  41. Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135:9995–9998. https://doi.org/10.1021/ja403761s

    Article  CAS  Google Scholar 

  42. Zhao G, Zhang Y, Lei Y, Lv B, Gao J, Zhang Y, Li D (2010) Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surfaces, high oxygen evolution potential, and oxidation capability. Environ Sci Technol 44:1754–1759. https://doi.org/10.1021/es902336d

    Article  CAS  Google Scholar 

  43. Garciamota M, Vojvodic A, Metiu H, Man IC, Su H, Rossmeisl J, Norskov JK (2011) Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. Chemcatchem 3:1607–1611. https://doi.org/10.1002/cctc.201100160

    Article  CAS  Google Scholar 

  44. Montilla F, Morallon E, De Battisti A, Vazquez JL (2004) Preparation and characterization of antimony-doped tin dioxide electrodes. part 1 electrochemical characterization. J Phys Chem B 108:5036–5043. https://doi.org/10.1021/jp037480b

    Article  CAS  Google Scholar 

  45. Zhang L, Xu L, He J, Zhang J (2014) Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim Acta 117:192–201. https://doi.org/10.1016/j.electacta.2013.11.117

    Article  CAS  Google Scholar 

  46. Huang Z, Liu J, Xiao Z, Fu H, Fan W, Xu B et al (2018) A MOF-derived coral-like NiSe@NC nanohybrid: an efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Nanoscale 10:22758–22765. https://doi.org/10.1039/C8NR06877A

    Article  CAS  Google Scholar 

  47. Harrington SP, Devine TM (2008) Analysis of electrodes displaying frequency dispersion in mott-schottky tests. J Electrochem Soc 155:C381. https://doi.org/10.1149/1.2929819

    Article  CAS  Google Scholar 

  48. Noh MF, Soh MF, Teh CH, Lim EL, Yap CC, Ibrahim MA, Teridi MA (2017) Effect of temperature on the properties of SnO2 layer fabricated via AACVD and its application in photoelectrochemical cells and organic photovoltaic devices. Sol Energy 158:474–482. https://doi.org/10.1016/j.solener.2017.09.048

    Article  CAS  Google Scholar 

  49. Yang WH (2012) Preparation and characterization of a novel Bi-doped pboelectrode. Acta Phys Chim Sin 28:831–836. https://doi.org/10.3866/PKU.WHXB201202101

    Article  CAS  Google Scholar 

  50. Cui W, Wang H, Liang Y, Han B, Liu L, Hu J (2013) Microwave-assisted synthesis of Ag@AgBr-intercalated K4Nb6O17 composite and enhanced photocatalytic degradation of rhodamine B under visible light. Chem Eng J 230:10–18. https://doi.org/10.1016/j.cej.2013.03.091

    Article  CAS  Google Scholar 

  51. Lu HX, Wang GQ, Dai RH, Ding X, Liu MC, Sun HH, Sun CQ, Zhao GH (2019) Visible-light-driven photoelectrochemical aptasensor based on reduced graphene oxide/Ti-Fe-O nanotube arrays for highly sensitive and selective determination of microcystin-LR. Electrochim Acta 324:134820. https://doi.org/10.1016/j.electacta.2019.134820

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21875026, 21878031), the Liaoning Revitalization Talents Program (XLYC1802124). The project is also sponsored by Liaoning BaiQianWan Talents Program, the scientific research fund of the educational department of Liaoning province (J2019013). This work was also supported by Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Project number: 2019JH3/30100034; Contract number: 2019010278-JH3/301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guowen Wang or Hongchao Ma.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ma-An, H., Fu, Y. et al. Graphene oxide-promoted Ti/PbO2 photoanode with photoelectric synergy effect for efficient photoelectrocatalytic degradation of reactive brilliant blue. J Mater Sci 56, 4741–4752 (2021). https://doi.org/10.1007/s10853-020-05604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05604-4

Navigation