Skip to main content
Log in

Analysis of neural clusters due to deep brain stimulation pulses

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Deep brain stimulation (DBS) is an established method for treating pathological conditions such as Parkinson’s disease, dystonia, Tourette syndrome, and essential tremor. While the precise mechanisms which underly the effectiveness of DBS are not fully understood, several theoretical studies of populations of neural oscillators stimulated by periodic pulses have suggested that this may be related to clustering, in which subpopulations of the neurons are synchronized, but the subpopulations are desynchronized with respect to each other. The details of the clustering behavior depend on the frequency and amplitude of the stimulation in a complicated way. In the present study, we investigate how the number of clusters and their stability properties, bifurcations, and basins of attraction can be understood in terms of one-dimensional maps defined on the circle. Moreover, we generalize this analysis to stimuli that consist of pulses with alternating properties, which provide additional degrees of freedom in the design of DBS stimuli. Our results illustrate how the complicated properties of clustering behavior for periodically forced neural oscillator populations can be understood in terms of a much simpler dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Adamchic I, Hauptmann C, Barnikol UB, Pawelczyk N, Popovych O, Barnikol TT, Silchenko A, Volkmann J, Deuschl G, Meissner WG, Maarouf M, Sturm V, Freund HJ, Tass PA (2014) Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Mov Disord 29(13):1679–1684

    PubMed  PubMed Central  Google Scholar 

  • Benabid A, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Movement Disorders 17(SUPPL. 3):19–38

    Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, Rougemont JD (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–406

    CAS  PubMed  Google Scholar 

  • Best D, Fisher N (1979) Efficient simulation of the von Mises distribution. J R Stat Soc Ser C Appl Stat 28:152–157

    Google Scholar 

  • Brown E, Moehlis J, Holmes P (2004) On the phase reduction and response dynamics of neural oscillator populations. Neural Comp 16:673–715

    Google Scholar 

  • Buhmann C, Huckhagel T, Engel K, Gulberti A, Hidding U, Poetter-Nerger M, Goerendt I, Ludewig P, Braass H, Choe C et al (2017) Adverse events in deep brain stimulation: a retrospective long-term analysis of neurological psychiatric and other occurrences. PLoS One 12:e0178984

    PubMed  PubMed Central  Google Scholar 

  • Chen C, Litvak V, Gilbertson T, Kuhn A, Lu C, Lee S, Tsai C, Tisch S, Limousin P, Hariz M, Brown P (2007) Excessive synchronization of basal ganglia neurons at 20 hz slows movement in Parkinson’s disease. Experim Neurol 205:214–221

    Google Scholar 

  • Chiken S, Nambu A (2016) Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist 22:313–322

    PubMed  Google Scholar 

  • Cyron D (2016) Mental side effects of deep brain stimulation (DBS) for movement disorders: the futility of denial. Front Integr Neurosci 10:17

    PubMed  PubMed Central  Google Scholar 

  • Daido H (1996) Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: bifurcation of the order function. Phys D 91:24–66

    Google Scholar 

  • Ermentrout G (2002) Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia

    Google Scholar 

  • Ermentrout G, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci USA 95:1259–1264

    CAS  PubMed  Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical Foundations of Neuroscience. Springer, Berlin

    Google Scholar 

  • Glass L, Mackey MC (1988) From Clocks to Chaos: the Rhythms of Life. Princeton University Press, Princeton

    Google Scholar 

  • Guckenheimer J (1975) Isochrons and phaseless sets. J Math Biol 1:259–273

    CAS  PubMed  Google Scholar 

  • Hammond C, Bergman H, Brown P (2007) Pathological synchronization in parkinson’s disease: networks, models and treatments. Trends Neurosci 30:357–364

    CAS  PubMed  Google Scholar 

  • Herrington T, Cheng J, Eskandar E (2016) Mechanisms of deep brain stimulation. J Neurophysiol 115:19–38

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keener J, Hoppensteadt F, Rinzel J (1981) Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM J ono Appl Math 41:503–517

    Google Scholar 

  • Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115(11):2431–2441

    PubMed  Google Scholar 

  • Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. Springer, Berlin

    Google Scholar 

  • Levy R, Hutchison W, Lozano A, Dostrovsky J (2000) High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. J Neurosci 20:7766–7775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Postupna N, Falkenberg J, Anderson M (2008) High frequency deep brain stimulation: what are the therapeutic mechanisms? Neurosci Biobehav Rev 32:343–351

    CAS  PubMed  Google Scholar 

  • Lücken L, Yanchuk S, Popovych O, Tass P (2013) Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons. Front Comput Neurosci 7:63

    PubMed  PubMed Central  Google Scholar 

  • Lysyansky B, Popovych O, Tass P (2011) Desynchronizing anti-resonance effect of m: n ON-OFF coordinated reset stimulation. J Neural Eng 8:036019

    PubMed  Google Scholar 

  • Lysyansky B, Popovych O, Tass P (2013) Optimal number of stimulation contacts for coordinated reset neuromodulation. Front Neuroeng 6:5

    PubMed  PubMed Central  Google Scholar 

  • Matchen T, Moehlis J (2018) Phase model-based neuron stabilization into arbitrary clusters. Journal of Computational Neuroscience 44:363–378

    PubMed  Google Scholar 

  • Monga B, Moehlis J (2019) Phase distribution control of a population of oscillators. Phys D 398:115–129

    Google Scholar 

  • Monga B, Moehlis J (2020) Supervised learning algorithms for control of underactuated dynamical systems. Phys D 412:132621

    Google Scholar 

  • Monga B, Wilson D, Matchen T, Moehlis J (2019) Phase reduction and phase-based optimal control for biological systems: a tutorial. Biol Cybern 113:11–46

    PubMed  Google Scholar 

  • Montgomery E (2010) Deep Brain Stimulation Programming: principles and Practice. Oxford University Press, Oxford

    Google Scholar 

  • Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59(5):706–713

    CAS  PubMed  Google Scholar 

  • Nabi A, Mirzadeh M, Gibou F, Moehlis J (2013) Minimum energy desynchronizing control for coupled neurons. J Comp Neuro 34:259–271

    Google Scholar 

  • Netoff T, Schwemmer M, Lewis T (2012) Experimentally estimating phase response curves of neurons: theoretical and practical issues. In: Schultheiss N, Prinz A, Butera R (eds) Phase Response Curves in Neuroscience. Springer, Berlin, pp 95–129

  • Ott E (1993) Chaos in Dynamical Systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Rizzone M, Lanotte M, Bergamasco B, Tavella A, Torre E, Faccani G, Melcarne A, Lopiano L (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatr 71(2):215–219

    CAS  Google Scholar 

  • Rosenbaum R, Zimnik A, Zheng F, Turner R, Alzheimer C, Doiron B, Rubin J (2014) Axonal and syntaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation. Neurobiol Dis 62:86–99

    PubMed  Google Scholar 

  • Rubin J, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–235

    PubMed  Google Scholar 

  • Savica R, Stead M, Mack K, Lee K, Klassen B (2012) Deep brain stimulation in Tourette syndrome: a description of 3 patients with excellent outcome. Mayo Clinic Proc 87:59–62

    Google Scholar 

  • Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296

    CAS  PubMed  Google Scholar 

  • Tass PA (2003) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 89(2):81–88

    PubMed  Google Scholar 

  • Tass PA (2003) Desynchronization by means of a coordinated reset of neural sub-populations—A novel technique for demand-controlled deep brain stimulation. Progress Theor Phys Suppl 150:281–296

    Google Scholar 

  • Uhlhaas P, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168

    CAS  PubMed  Google Scholar 

  • Volkmann J, Herzog J, Kopper F, Deuschl G (2002) Introduction to the programming of deep brain stimulators. Mov Disord 17(Suppl 3):S181–187

    PubMed  Google Scholar 

  • Wilson CJ, Beverlin B, Netoff T (2011) Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Front Syst Neurosci 5:50

    PubMed  PubMed Central  Google Scholar 

  • Wilson D (2020) Optimal open-loop desynchronization of neural oscillator populations. J Math Biol 81:25–64

    PubMed  Google Scholar 

  • Wilson D, Ermentrout B (2018) Greater accuracy and broadened applicability of phase reduction using isostable coordinates. J Math Biol 76(1–2):37–66

    PubMed  Google Scholar 

  • Wilson D, Moehlis J (2014) Optimal chaotic desynchronization for neural populations. SIAM J Appl Dyn Syst 13:276–305

    Google Scholar 

  • Wilson D, Moehlis J (2015) Clustered desynchronization from high-frequency deep brain stimulation. PLoS Comput Biol 11(12):e1004673

    PubMed  PubMed Central  Google Scholar 

  • Winfree A (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:14–42

    Google Scholar 

  • Winfree A (2001) The Geometry of Biological Time, 2nd edn. Springer, New York

    Google Scholar 

Download references

Acknowledgements

This research grew out of the Research Mentorship Program at the University of California, Santa Barbara during summer 2018. We thank Dr. Lina Kim for providing the opportunity for Daniel and Jacob to conduct this research as high school students, and for Tim Matchen for guidance on the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Moehlis.

Additional information

Communicated by Jonathan Rubin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: neuron models

In this appendix, we give details of the neural models used in this paper, specifically the Hodgkin–Huxley model considered in the main text, and the thalamic neuron model considered in Appendix B.

Hodgkin–Huxley neuron model

The full Hodgkin–Huxley model is given by:

$$\begin{aligned} \dot{V}= & {} (I_b -\bar{g}_{Na}h(V-V_{Na})m^3-\bar{g}_K(V-V_K)n^4\\&-\bar{g}_L(V-V_L))/c + u(t) \; , \\ \dot{m}= & {} a_m(V)(1-m)-b_m(V)m \; , \\ \dot{h}= & {} a_h(V)(1-h)-b_h(V)h \; , \\ \dot{n}= & {} a_n(V)(1-n)-b_n(V)n \; , \end{aligned}$$

where

$$\begin{aligned} a_m(V)= & {} 0.1(V+40)/(1-\exp (-(V+40)/10)) \; , \\ b_m(V)= & {} 4\exp (-(V+65)/18) \; , \\ a_h(V)= & {} 0.07\exp (-(V+65)/20) \; , \\ b_h(V)= & {} 1/(1+\exp (-(V+35)/10)) \; , \\ a_n(V)= & {} 0.01(V+55)/(1-\exp (-(V+55)/10)) \; , \\ b_n(V)= & {} 0.125\exp (-(V+65)/80) \; , \end{aligned}$$

The parameters for this model are

$$\begin{aligned} V_{Na}= & {} 50 \; mV \;,\; V_K=-77 \; mV \;,\; V_L=-54.4 \; mV \;, \\ \bar{g}_{Na}= & {} 120 \; mS/cm^2 \; , \; \bar{g}_K=36 \; mS/cm^2 \;,\\ \bar{g}_L= & {} 0.3 \; mS/cm^2 \;,\; I_b=10 \; \mu A/cm^2 \;,\\ c= & {} 1 \; \mu F/cm^2 . \end{aligned}$$

Thalamic neuron model

The full thalamic neuron model is given by:

$$\begin{aligned} \dot{V}= & {} \frac{-I_L-I_{Na}-I_K-I_T+I_b}{C_m}+u(t),\\ \dot{h}= & {} \frac{h_{\infty }-h}{\tau _h},\\ \dot{r}= & {} \frac{r_{\infty }-r}{\tau _r}, \end{aligned}$$

where

$$\begin{aligned} h_\infty= & {} 1/(1+\exp ((V+41)/4)),\\ r_\infty= & {} 1/(1+\exp ((V+84)/4)),\\ \alpha _h= & {} 0.128\exp (-(V+46)/18),\\ \beta _h= & {} 4/(1+\exp (-(V+23)/5)),\\ \tau _h= & {} 1/(\alpha _h+\beta _h),\\ \tau _r= & {} (28+\exp (-(V+25)/10.5)),\\ m_\infty= & {} 1/(1+\exp (-(V+37)/7)),\\ p_\infty= & {} 1/(1+\exp (-(V+60)/6.2)),\\ I_L= & {} g_L(V-e_L),\\ I_{Na}= & {} g_{Na}({m_\infty }^3)h(V-e_{Na}),\\ I_K= & {} g_K((0.75(1-h))^4)(V-e_K),\\ I_T= & {} g_T(p_\infty ^2)r(V-e_T). \end{aligned}$$

The parameters for this model are

$$\begin{aligned} C_m= & {} 1 \; \mu F/cm^2 \;,\; g_L = 0.05 \; mS/cm^2 \;,\; e_L = -70 \; mV \;,\\ g_{Na}= & {} 3 \; mS/cm^2 \;,\; e_{Na} = 50 \; mV, g_K = 5 \; mS/cm^2 \;,\\ e_K= & {} -90 \; mV \;,\; g_T = 5 \; mS/cm^2 \;,\; e_T = 0 \; mV \;,\\ I_b= & {} 5 \; \mu A/cm^2. \end{aligned}$$

Appendix B: results for thalamic neurons

In this appendix, we show simulations and analysis for an (approximately) Type I neuron model, the thalamic neurons from (Rubin and Terman 2004). The full equations are given in Appendix A; for our simulations, we use the corresponding phase model. For reference, for these parameters the thalamic neurons have \(\omega = 0.748\) rad/s.

We consider populations of thalamic neurons with the same stimuli (7) with \(u_{max}\) corresponding to a current density of 20 \(\mu A/cm^2\), \(p = 0.5\) ms, and \(\lambda = 3\). We simulated 500 thalamic neurons with initial phases evenly spaced between 0 and \(2 \pi \), corresponding to a uniform distribution. The stimulation frequency was varied from 70 Hz to 300 Hz in increments of 5 Hz. Figure 20 shows the final phases after 40 periods of stimulation, after transients have decayed. Figure 21 shows the time series of the phases of a population of such neurons for selected frequencies. Here, we again see clustering for some frequencies (such as 250 Hz, where \(r_2\) is large and \(r_1\) and \(r_3\) are small, indicating a 2-cluster solution), and non-clustering behavior for other frequencies (such as 200 Hz, where the Lyapunov exponent \(\varLambda \) is positive, corresponding to chaotic dynamics).

Fig. 20
figure 20

a The final phases \(\theta \) of thalamic neurons drawn from an initial uniform distribution as a function of stimulation frequency, after 40 periods of stimulation. Colors correspond to the neurons’ initial phases. b Order parameters \(r_1\) (black), \(r_2\) (blue), and \(r_3\) (red) for the final state as a function of frequency. For the initial uniform distribution, \(r_1=r_2=r_3=0\). c Lyapunov exponent \(\varLambda \) as a function of stimulation frequency

Fig. 21
figure 21

Time series showing the phases of thalamic neurons drawn from an initial uniform distribution for frequencies a 200 Hz, and b 250 Hz. For (a), clusters do not form; for (b), there are two clusters after transients decay away

The same analysis techniques can also be used to understand the dynamics of thalamic neurons subjected to periodic pulses. Figure 22a shows the response function \(f(\theta )\) for thalamic neurons with the stimulus given by (7) with \(u_{max}\) corresponding to a current density of \(20 \mu A/cm^2\), \(p = 0.5\) ms, and \(\lambda = 3\); Fig. 22b shows that there is a stable 2-cluster state for a stimulation frequency of 250 Hz, as expected from Fig. 20.

Fig. 22
figure 22

a Response function \(f(\theta )\) which characterizes the phase response of thalamic neurons to a pulse with \(u_{max}\) corresponding to a current of \(20 \mu A/cm^2\), \(p = 0.5\) ms, and \(\lambda =3\). b Map \(g^{(2)}(\theta )\) for the thalamic neuron with stimulation frequency 250 Hz, showing two stable fixed points which correspond to a 2-cluster state

Appendix C: shift properties of the maps

Proposition 1

(Shift properties of \(g^{(n)}\)): Iterates of the map

$$\begin{aligned} g_\tau (\theta ) = \theta + \omega \tau + f(\theta + \omega \tau ) \end{aligned}$$
(28)

satisfy the property

$$\begin{aligned} g_\sigma ^{(n)}(\theta ) = g_\tau ^{(n)}(\theta + \omega (\sigma - \tau )) + \mathcal{O}(\sigma - \tau ). \end{aligned}$$
(29)

Proof

We will prove this by induction. First, (29) holds for \(n=1\) from (19) in the main text (in fact, in this case the \(\mathcal{O}(\sigma - \tau )\) correction term vanishes). Next, let us assume that (29) holds for n; we will show that this implies that it also holds for \(n+1\). For reference,

$$\begin{aligned} g_\tau ^{(n+1)}(\theta )= & {} g_\tau (g_\tau ^{(n)}(\theta ))\nonumber \\= & {} g_\tau ^{(n)}(\theta ) + \omega \tau + f(g_\tau ^{(n)}(\theta ) + \omega \tau ). \end{aligned}$$
(30)

Now,

$$\begin{aligned} g_\sigma ^{(n+1)}(\theta )= & {} g_\sigma (g_\sigma ^{(n)}(\theta )) \\= & {} g_\sigma ^{(n)}(\theta ) + \omega \sigma + f(g_\sigma ^{(n)}(\theta ) + \omega \sigma ) \\= & {} g_\tau ^{(n)}(\theta + \omega (\sigma - \tau )) + \mathcal{O}(\sigma - \tau ) + \omega \sigma \\&+ f(g_\tau ^{(n)} (\theta + \omega (\sigma - \tau )) + \mathcal{O}(\sigma - \tau ) + \omega \sigma ), \end{aligned}$$

where we have used (29). We now use \(\omega \sigma = \omega \tau + \omega (\sigma - \tau ) = \omega \tau + \mathcal{O}(\sigma - \tau )\) to give

$$\begin{aligned} g_\sigma ^{(n+1)}(\theta )= & {} g_\tau ^{(n)}(\theta + \omega (\sigma - \tau )) + \omega \tau + \mathcal{O}(\sigma - \tau ) \\&+ f(g_\tau ^{(n)} (\theta + \omega (\sigma - \tau )) + \omega \tau + \mathcal{O}(\sigma - \tau )). \end{aligned}$$

Next, we Taylor expand the last term about \(g_\tau ^{(n)} (\theta + \omega (\sigma - \tau )) + \omega \tau \), treating \((\sigma - \tau )\) as small:

$$\begin{aligned} f(g_\tau ^{(n)}(\theta+ & {} \omega (\sigma - \tau )) + \omega \tau + \mathcal{O}(\sigma - \tau )) \\= & {} f(g_\tau ^{(n)}(\theta + \omega (\sigma - \tau )) + \omega \tau ) + \mathcal{O}(\sigma - \tau ) \\ \end{aligned}$$

Thus,

$$\begin{aligned} g_\sigma ^{(n+1)}(\theta )= & {} g_\tau ^{(n)}(\theta + \omega (\sigma - \tau )) + \omega \tau \\&+ f(g_\tau ^{(n)} (\theta + \omega (\sigma - \tau )) + \omega \tau ) + \mathcal{O}(\sigma - \tau ) \\= & {} g_\tau ^{(n+1)} (\theta + \omega (\sigma - \tau )) + \mathcal{O}(\sigma - \tau ), \end{aligned}$$

where the last equality follows from (30). Therefore, (29) holds for all \(n \ge 1\), with no \(\mathcal{O}(\sigma - \tau )\) term necessary for \(n=1\) from (19).

Proposition 2

(Shift properties of \(G^{(n)}\)): Iterates of the map

$$\begin{aligned} G_{\tau , \tau _2}(\theta )= & {} \theta + \omega \tau + f_2 (\theta + \omega \tau _2) \nonumber \\&+ f(\theta + \omega \tau + f_2(\theta + \omega \tau _2)) \end{aligned}$$
(31)

satisfy the property

$$\begin{aligned} G_{\sigma , \sigma _2}^{(n)}= & {} G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) \nonumber \\&+ \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2). \end{aligned}$$
(32)

Proof

We will prove this using induction. Let us first show that (32) holds for \(n=1\). By definition,

$$\begin{aligned} G_{\sigma , \sigma _2}(\theta )= & {} \theta + \omega \sigma + f_2 (\theta + \omega \sigma _2) \nonumber \\&+ f(\theta + \omega \sigma + f_2(\theta + \omega \sigma _2)). \end{aligned}$$

Letting

$$\begin{aligned} \theta = \hat{\theta } + \omega (\tau - \sigma ) + \omega (\tau _2 - \sigma _2), \end{aligned}$$

and simplifying, we obtain

$$\begin{aligned} G_{\sigma , \sigma _2} (\theta )= & {} \hat{\theta } + \omega \tau - \omega (\sigma _2 - \tau _2) \\&+ f_2(\hat{\theta } + \omega \tau _2 - \omega (\sigma - \tau )) \\&+ f(\hat{\theta } + \omega \tau - \omega (\sigma _2 - \tau _2) \\&\;\;\;\;\; + f_2(\hat{\theta } + \omega \tau _2 - \omega (\sigma - \tau ))) \\= & {} \hat{\theta } + \omega \tau + f_2(\hat{\theta } + \omega \tau _2) \\&+ f(\hat{\theta } + \omega \tau + f_2 (\hat{\theta } + \omega \tau _2)) \\&+ \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) \\= & {} G_{\tau , \tau _2}(\hat{\theta }) + \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) \\= & {} G_{\tau , \tau _2} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) \\&+ \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2). \end{aligned}$$

Here, the second equality follows from Taylor expansion, treating \((\sigma - \tau )\) and \((\sigma _2 - \tau _2)\) as small. Thus, (32) holds for \(n=1\).

Now, suppose (32) holds for n; we will show this also implies that it holds for \(n+1\). For reference,

$$\begin{aligned} G_{\tau , \tau _2}^{(n+1)}(\theta )= & {} G_{\tau , \tau _2} (G_{\tau , \tau _2}^{(n)}(\theta )) \nonumber \\= & {} G_{\tau , \tau _2}^{(n)}(\theta ) + \omega \tau + f_2(G_{\tau , \tau _2}^{(n)} (\theta ) +\omega \tau _2) \nonumber \\&+ f(G_{\tau , \tau _2}^{(n)}(\theta ) + \omega \tau + f_2 (G_{\tau , \tau _2}^{(n)}(\theta ) +\omega \tau _2)). \nonumber \\ \end{aligned}$$
(33)

Now,

$$\begin{aligned} G_{\sigma , \sigma _2}^{(n+1)}(\theta )= & {} G_{\sigma , \sigma _2} (G_{\sigma , \sigma _2}^{(n)}(\theta )) \\= & {} G_{\sigma , \sigma _2}^{(n)}(\theta ) + \omega \sigma + f_2(G_{\sigma , \sigma _2}^{(n)} (\theta ) +\omega \sigma _2) \\&+ f(G_{\sigma , \sigma _2}^{(n)}(\theta ) + \omega \sigma + f_2 (G_{\sigma , \sigma _2}^{(n)}(\theta ) +\omega \sigma _2)) \\= & {} G_{\tau , \tau _2}^{(n)}(\theta + \omega (\sigma - \tau ) +\omega (\sigma _2 - \tau _2)) \\&+ \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) + \omega \sigma \\&+ f_2(G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) \\&\;\;\;\;\; + \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) + \omega \sigma _2) \\&+ f(G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) \\&\;\;\;\;\;+ \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) + \omega \sigma \\&\;\;\; + f_2 (G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) \\&\;\;\;\;\; + \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) + \omega \sigma _2)), \end{aligned}$$

where the last equality follows from (32). Letting

$$\begin{aligned} \omega \sigma = \omega \tau + \omega (\sigma - \tau ) = \omega \tau + \mathcal{O}(\sigma - \tau ) \end{aligned}$$

and

$$\begin{aligned} \omega \sigma _2= & {} \omega \tau _2 + \omega (\sigma _2 - \tau _2) = \omega \tau _2 + \mathcal{O}(\sigma _2 - \tau _2),\\ G_{\sigma , \sigma _2}^{(n+1)}(\theta )= & {} G_{\tau , \tau _2}^{(n)}(\theta + \omega (\sigma - \tau ) +\omega (\sigma _2 - \tau _2)) \\&+ \omega \tau + \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) \\&+ f_2(G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) \\&\;\;\;\;\; + \omega \tau _2 + \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2)) \\&+ f(G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) \\&\;\;\;\;\; + \omega \tau + \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) \\&\;\;\; + f_2 (G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) \\&\;\;\;\;\; + \omega \tau _2 + \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) )). \end{aligned}$$

Finally, treating \((\sigma - \tau )\) and \((\sigma _2 - \tau _2)\) as small and Taylor expanding f and \(f_2\),

$$\begin{aligned} G_{\sigma , \sigma _2}^{(n+1)}(\theta )= & {} G_{\tau , \tau _2}^{(n)}(\theta + \omega (\sigma - \tau ) +\omega (\sigma _2 - \tau _2)) + \omega \tau \\&+ f_2(G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) \nonumber \\&+ \omega (\sigma _2 - \tau _2)) + \omega \tau _2) \\&+ f(G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) + \omega \tau \\&\;\;\; + f_2 (G_{\tau , \tau _2}^{(n)} (\theta + \omega (\sigma - \tau ) \nonumber \\&+ \omega (\sigma _2 - \tau _2))+ \omega \tau _2)) \\&+ \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2) \\= & {} G_{\tau , \tau _2}^{(n+1)} (\theta + \omega (\sigma - \tau ) + \omega (\sigma _2 - \tau _2)) \\&+ \mathcal{O}(\sigma - \tau ) + \mathcal{O}(\sigma _2 - \tau _2), \end{aligned}$$

as desired, where the last equality follows from (33). Thus, (32) holds for all \(n \ge 1\).

Proposition 3

(Shift properties of \(h_1\) and \(h_2\)):

The maps

$$\begin{aligned} h_{1 \tau , \tau _2}(\theta )= & {} \theta + \omega (\tau - \tau _2) + f(\theta + \omega (\tau - \tau _2)) \end{aligned}$$
(34)
$$\begin{aligned} h_{2 \tau _2}(\theta )= & {} \theta + \omega \tau _2 + f_2 (\theta + \omega \tau _2) \end{aligned}$$
(35)

satisfy the properties

$$\begin{aligned} h_{1 \sigma , \sigma _2}(\theta )= & {} h_{1 \tau , \tau _2}(\theta + \omega (\sigma - \tau ) + \omega (\tau _2 - \sigma _2)), \end{aligned}$$
(36)
$$\begin{aligned} h_{2 \sigma _2}(\theta )= & {} h_{2 \tau _2} (\theta + \omega (\sigma _2 - \tau _2)). \end{aligned}$$
(37)

Proof

First, consider

$$\begin{aligned} h_{1 \sigma , \sigma _2}(\theta ) = \theta + \omega (\sigma - \sigma _2) + f(\theta + \omega (\sigma - \sigma _2)). \end{aligned}$$

Letting

$$\begin{aligned} \theta = \hat{\theta } + \omega (\tau - \sigma ) + \omega (\sigma _2 - \tau _2) \end{aligned}$$

and simplifying,

$$\begin{aligned} h_{1 \sigma , \sigma _2}(\theta )= & {} \hat{\theta } + \omega (\tau - \tau _2) + f(\hat{\theta } + \omega (\tau - \tau _2)) \nonumber \\= & {} h_{1 \tau , \tau _2}(\hat{\theta }) \\= & {} h_{1 \tau , \tau _2}(\theta + \omega (\sigma - \tau ) + \omega (\tau _2 - \sigma _2)). \end{aligned}$$

Now, consider

$$\begin{aligned} h_{2 \sigma _2}(\theta ) = \theta + \omega \sigma _2 + f_2(\theta + \omega \sigma _2). \end{aligned}$$

Letting

$$\begin{aligned} \theta = \hat{\theta } + \omega (\tau _2 - \sigma _2) \end{aligned}$$

and simplifying,

$$\begin{aligned} h_{2 \sigma _2}(\theta )= & {} \hat{\theta } + \omega \tau _2 + f(\hat{\theta } + \omega \tau _2) = h_{2 \tau _2}(\hat{\theta }) \\= & {} h_{2 \tau _2} (\theta + \omega (\sigma _2 - \tau _2)). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuelbs, D., Dunefsky, J., Monga, B. et al. Analysis of neural clusters due to deep brain stimulation pulses. Biol Cybern 114, 589–607 (2020). https://doi.org/10.1007/s00422-020-00850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-020-00850-w

Keywords

Navigation