Skip to main content

Advertisement

Log in

Consequences of a Solar Wind Stream Interaction Region on the Low Latitude Ionosphere: Event of 7 October 2015

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this article, we present a study of the perturbations occurring in the Earth’s environment on 7 October 2015. We use a multi-instrument approach, including space and ground observations.

In particular, we study the ionospheric conditions at low latitudes. Two ionospheric storms are observed at the low latitude station of Tucumán (\(26^{\circ}\) \(51'\) S, \(65^{\circ}\) \(12'\) W). We observe a negative ionospheric storm followed by a positive one. These ionospheric perturbations were triggered by two sudden storm commencements (SSCs) of a strong geomagnetic storm. Preliminary results show that the main mechanism involved in both ionospheric storms is the prompt penetration of electric fields (PPEFs) from the magnetosphere. Furthermore, in the positive storm, disturbed dynamo electric fields are observed acting in combination with the PPEFs. The impact of the solar wind on the Earth’s environment is analyzed using geomagnetic data and proxies, combined with data acquired in the Tucumán Low Latitude Observatory for the Upper Atmosphere.

We also investigate the solar and interplanetary drivers of this intense perturbation. We find that, although typically interplanetary coronal mass ejections (ICMEs) are the most geoeffective transient interplanetary events, in this case, a corotating interaction region (CIR) is responsible for these strong perturbations to the geospace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alves, M.V.: 2006, Geoeffectiveness of coronating interaction regions as measured by index. J. Geophys. Res. 111, 0148. DOI.

    Article  Google Scholar 

  • Bagiya, M., Krishna, I., Joshi, H., Thampi, S., Tsugawa, T., Ravindran, S., Sridharan, R., Pathan, B.: 2011, Low-latitude ionospheric-thermospheric response to stormtime electrodynamical coupling between high and low latitudes. J. Geophys. Res. 116, A01303. DOI.

    Article  ADS  Google Scholar 

  • Balan, N., Yamamoto, M., Sreeja, V., Batista, I.S., Lynn, K.J.W., Abdu, M.A., Ravindran, S., Kikuchi, T., Otsuka, Y., Shokawa, K., Alex, S.: 2011, A statistical study of the response of the dayside equatorial F2 layer to the main phase of intense geomagnetic storms as an indicator of penetration electric field. J. Geophys. Res. 116, A03323. DOI.

    Article  ADS  Google Scholar 

  • Bianchi, C., Baskaradas, J., Pezzopane, M., Pietrella, M., Umberto, S., Zuccheretti, E.: 2013, Fading in the HF ionospheric channel and the role of irregularities. Adv. Space Res. 52, 403. DOI.

    Article  ADS  Google Scholar 

  • Bilitza, D., Sheik, N., Eyfrig, R.: 1979, A global model for the height of the F2-peak using M3000 values from the CCIR numerical map. Telecommun. J. 46, 549.

    ADS  Google Scholar 

  • Blanc, M., Richmond, A.D.: 1980, The ionospheric disturbance dynamo. J. Geophys. Res. 85, 1669. DOI.

    Article  ADS  Google Scholar 

  • Bothmer, V., Zhukov, A., Daglis, I.: 2007, The Sun as the Prime Source of Space Weather, Springer, Berlin. DOI.

    Book  Google Scholar 

  • Bradley, P.A., Dudeney, J.R.: 1973, A simple model of the vertical distribution of the electron concentration in the ionosphere. J. Atmos. Terr. Phys. 35, 2131. DOI.

    Article  ADS  Google Scholar 

  • Buonsanto, M.J.: 1999, Ionospheric storms, a review. Space Sci. Rev. 88, 563. DOI.

    Article  ADS  Google Scholar 

  • Buresova, D., Lastovicka, J.: 2007, Pre-storm enhancements of foF2 above Europe. Adv. Space Res. 39, 1298. DOI.

    Article  ADS  Google Scholar 

  • Buresova, D., Lastovicka, J.: 2008, Pre-storm electron density enhancements at middle latitudes. J. Atmos. Solar-Terr. Phys. 70, 1848. DOI.

    Article  ADS  Google Scholar 

  • Cabrera, M., Zuccheretti, E., Ezquer, R., Sciacca, U., Lopez, J., Molina, M., Baskaradas, J.: 2010, Some considerations for different time-domain signal processing of pulse compression radar. Ann. Geophys. 53(5–6), 1. DOI.

    Article  Google Scholar 

  • Chi, Y., Shen, C., Luo, B., Wang, Y., Xu, M.: 2018, Geoeffectiveness of stream interaction regions from 1995 to 2016. Space Weather 16, 1542. DOI.

    Article  Google Scholar 

  • Danilov, A.D.: 2001, F2-region response to geomagnetic disturbances. J. Atmos. Solar-Terr. Phys. 63, 441. DOI.

    Article  ADS  Google Scholar 

  • Danilov, A.D.: 2013, Ionospheric F-region response to geomagnetic disturbances. J. Atmos. Solar-Terr. Phys. 52(3), 343. DOI.

    Article  Google Scholar 

  • Dasso, S., Shea, M.A.: 2020, Magnetosphere, ionosphere and their connection to Space Weather. Adv. Space Res. 65, 2081. DOI.

    Article  ADS  Google Scholar 

  • Fejer, B.G., Kamide, Y., Slavi, J.A.: 1986, Solar Wind-Magnetosphere Coupling, Terra Scientific Publishing Co., Tokyo, 519.

    Book  Google Scholar 

  • Fejer, B.G., Larsen, M.F., Farley, D.T.: 1983, Equatorial disturbance dynamo electric fields. Geophys. Res. Lett. 10, 537. DOI.

    Article  ADS  Google Scholar 

  • Fejer, B.G., Scherliess, L.: 1997, Empirical models of storm time equatorial electric fields. J. Geophys. Res. 102, 24,047. DOI.

    Article  ADS  Google Scholar 

  • Fejer, B.G., Scherliess, L., de Paula, E.R.: 1999, Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res. 104(A9), 19,859. DOI.

    Article  ADS  Google Scholar 

  • Fuller-Rowell, T., Codrescu, M., Risbeth, H., Moffett, R., Quegan, S.: 1996, On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 101, 2343. DOI.

    Article  ADS  Google Scholar 

  • Fuller-Rowell, T.J., Codrescu, M.V., Roble, R.G., Richmond, A.D.: 1997, How does the thermosphere and ionosphere react to a geomagnetic storm? In: Tsurutani, B.T. (ed.) Magnetic Storms, Geophysical Monograph Series 98, Am. Geophys. Union, Washington, 203. DOI.

    Chapter  Google Scholar 

  • Fuller-Rowell, T.J., Millward, G.H., Richmond, A.D., Codrescu, M.V.: 2002, Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Solar-Terr. Phys. 64, 1383. DOI.

    Article  ADS  Google Scholar 

  • Goncharenko, L.P., Foster, J.C., Coster, A.J., Huang, C., Aponte, N., Paxton, L.J.: 2007, Observations of a positive storm phase on September 10, 2005. J. Atmos. Solar-Terr. Phys. 69(10–11), 1253. DOI.

    Article  ADS  Google Scholar 

  • Gonzales, C.A., Kelley, M.C., Fejer, B.G., Vickrey, J.F., Woodman, R.F.: 1979, Equatorial electric fields during magnetically disturbed conditions: 2. Implications of simultaneous auroral and equatorial measurements. J. Geophys. Res. 84(A10), 5803. DOI.

    Article  ADS  Google Scholar 

  • Grandin, M., Aikio, A., Kozlovsky, A.: 2019, Properties and geoeffectiveness of solar wind high-speed streams and stream interaction regions during Solar Cycles 23 and 24. J. Geophys. Res. 124(6), 3871. DOI.

    Article  Google Scholar 

  • Kamide, Y., Yokoyama, N., Gonzalez, W., Tsurutani, B.T., Daglis, I.A., Brekke, A., Masuda, S.: 1998, Two-step development of geomagnetic storms. J. Geophys. Res. 103, 6917. DOI.

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2005, Ionospheric foF2 anomalies during some intense geomagnetic storms. Ann. Geophys. 23, 2487. DOI.

    Article  ADS  Google Scholar 

  • Kelley, M.C.: 1989, The Earth’s Ionosphere: Plasma Physics and Electrodynamics, Academic Press, San Diego. DOI.

    Book  Google Scholar 

  • Kelley, M.C., Fejer, B.G., Gonzales, C.A.: 1979, An explanation for anomalous equatorial ionospheric electric field associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 6(4), 301. DOI.

    Article  ADS  Google Scholar 

  • Kikuchi, T., Luehr, H., Schlegel, K., Tachihara, H., Shinohara, M., Kitamura, T.-I.: 2000, Penetration of auroral electric fields to the equator during a substorm. J. Geophys. Res. 105(A10), 23,251. DOI.

    Article  ADS  Google Scholar 

  • Kilpua, E., Koskinen, H.E.J., Pulkkinen, T.I.: 2017, Living Rev. Solar Phys. 14, 5. DOI.

    Article  ADS  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V.: 2012, Disturbance dynamo, prompt penetration electric field and oversheilding in the Earth’s ionosphere during geomagnetic storm. J. Atmos. Solar-Terr. Phys. 90–91, 146. DOI.

    Article  ADS  Google Scholar 

  • Krishna, S.G.: 2020, GPS-TEC Analysis Software Version 2.9.5. Available at: http://seemala.blogspot.in (Accessed 01 October 2020).

  • Lu, G., Goncharenko, L.P., Richmond, A.D., Roble, R.G., Aponte, N.: 2008, A dayside ionospheric positive storm phase driven by neutral winds. J. Geophys. Res. 113, A08304. DOI.

    Article  ADS  Google Scholar 

  • Mannucci, A.J., Tsurutani, B.T., Lijima, B.A., Komjathu, A., Saito, A., Gonzalez, W.D.: 2005, Dayside global ionospheric response to the major interplanetary events of October 29, 2003 “Halloween storms”. Geophys. Res. Lett. 32, L12S02. DOI.

    Article  Google Scholar 

  • Maruyama, N., Richmond, A.D., Fuller-Rowell, T.J., Codrescu, M.V., Sazykin, S., Toffoletto, F.R., Spiro, R.W., Millward, G.H.: 2007, Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 32, L17105. DOI.

    Article  ADS  Google Scholar 

  • Matsui, H., Erickson, P.J., Foster, J.C., Torbert, R.B., Argall, M.R., Anderson, B.J., Blake, J.B., Cohen, I.J., Ergun, R.E., Farrugia, C.J., Khotyaintsev, Y.V., Korth, H., Lindqvist, P.A., Magnes, W., Marklund, G.T., Mauk, B.H., Paulson, K.W., Russell, C.T., Strangeway, R.J., Turner, D.L.: 2016, Dipolarization in the inner magnetosphere during a geomagnetic storm on 7 October 2015. Geophys. Res. Lett. 43, 9397. DOI.

    Article  ADS  Google Scholar 

  • Mayr, H.G., Harris, I., Spencer, N.W.: 1978, Some properties of upper atmosphere dynamics. Rev. Geophys. Space Phys. 16(4), 539. DOI.

    Article  ADS  Google Scholar 

  • Molina, M.G., Zuccheretti, E., Cabrera, M.A., Bianchi, C., Sciacca, U., Baskaradas, J.: 2016, Automatic ionospheric layers detection: algorithms analysis. Adv. Space Res. DOI.

    Article  Google Scholar 

  • Newell, P.T., Sotirelis, T., Liou, K., Meng, C.I., Rich, F.J.: 2007, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112, 0148. DOI.

    Article  Google Scholar 

  • Nishida, A., Iwasaki, T., Nagata, T.: 1966, The origin of fluctuations in the equatorial electrojet: a new type of geomagnetic variation. Ann. Geophys. 22, 478.

    Google Scholar 

  • Prölss, G.W.: 1991, Thermosphere-ionosphere coupling during disturbed conditions. J. Geomagn. Geoelectr. 43, 537. DOI.

    Article  ADS  Google Scholar 

  • Prölss, G.: 2004, Physics of the Earth’s Space Environment, Springer, Berlin. DOI.

    Book  MATH  Google Scholar 

  • Retterer, J.M., Kelley, M.C.: 2010, Solar wind drivers for low-latitude ionosphere models during geomagnetic storms. J. Atmos. Solar-Terr. Phys. 72, 344. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G.: 2018, Solar wind stream interaction regions throughout the heliosphere. Living Rev. Solar Phys. 15, 1. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I., Cane, H.: 2012, Solar wind drivers of geomagnetic storms over more than four solar cycles. J. Space Weather Space Clim. DOI.

    Article  Google Scholar 

  • Scherliess, L., Fejer, B.G.: 1997, Storm time dependence of equatorial disturbance dynamo zonal electric fields. J. Geophys. Res. 102(A12), 24,037. DOI.

    Article  ADS  Google Scholar 

  • Shimazaki, T.: 1955, World-wide variations in the height of the maximum electron density of the ionospheric F2 layer. J. Radio Res. Labs. Japan 2(7), 85.

    Google Scholar 

  • Snyder, C.W., Neugebauer, M., Rao, U.R.: 1963, The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J. Geophys. Res. 1896(68), 0148. DOI.

    Article  Google Scholar 

  • Sunda, S., Vyas, B.M., Khekale, P.V.: 2013, Storm time spatial variations in TEC during moderate geomagnetic storms in extremely low solar activity conditions (2007 – 2009) over Indian region. Adv. Space Res. 52(1), 158. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B., Mannucci, A., Lijima, B., Ali Abdu, M., Sobral, J.H.A., Gonzalez, W.: 2004, Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. 109, A08302. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B., McPherron, R., Gonzalez, W., Lu, G., Gopalswamy, N., Guarnieri, F.: 2006, Magnetic Storms Caused by Corotating Solar Wind Streams, Geophys. Monogr. Ser. 167. DOI.

    Book  Google Scholar 

  • Tsurutani, B.T., Verkhoglyadova, O.P., Mannucci, A.J., Saito, A., Araki, T., Yumoto, K., Tsuda, T., Abdu, M.A., Sobral, J.H.A., Gonzalez, W.D., McCreadie, H., Lakhina, G.S., Vasyliunas, V.M.: 2008, Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30 – 31 October 2003. J. Geophys. Res. 113, A05311. DOI.

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F.: 2008, Interplanetary origin of multiple-dip geomagnetic storms. J. Geophys. Res. 113, 0148. DOI.

    Article  Google Scholar 

  • Zolesi, B., Cander, J.: 2014, Ionospheric Prediction and Forecasting, Springer, Berlin. DOI.

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the Universidad Nacional de Tucumán. (grant CIUNT E689), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (grant PICT-2018-0447) and CONICET.

Sergio Dasso acknowledges partial support from grants UBACyT-UBA-20020160100072BA, and PIP-CONICET-11220130100439CO.

We also acknowledge the Tucumán Space Weather Center (TSWC), FACET-UNT, Tucumán, Argentina and the Laboratorio de Telecomunicaciones at UNT that currently maintains the Tucumán Low Latitude Observatory for Upper Atmosphere and provide the operative data.

We also aknowledge Laboratorio de Telecomunicaciones from Universidad Nacional de Tucumán that currently maintains the Tucumán Low Latitude Observatory for the Upper Atmosphere.

We acknowledge use of NASA/GSFC Space Physics Data Facility OMNIWeb service, and OMNI data.

The geomagnetic indices used in this article was provided by the WDC for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html).

We aknowledge the Red Argentina de Monitoreo Satelital Continuo (RAMSAC) for providing the GNSS data (https://www.ign.gob.ar/NuestrasActividades/Geodesia/Ramsac).

We acknowledge the CIRES/NCEI geomagnetism team for providing the Prompt Penetration Equatorial Electric Field Model (PPEEFM).

We acknowledge Ian Richardson for very useful discussions during the FRESWED meeting in San Juan, Argentina.

The authors would like to thank the reviewer of this article for his/her constructive comments, which helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Molina.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Towards Future Research on Space Weather Drivers

Guest Editors: Hebe Cremades and Teresa Nieves-Chinchilla

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, M.G., Dasso, S., Mansilla, G. et al. Consequences of a Solar Wind Stream Interaction Region on the Low Latitude Ionosphere: Event of 7 October 2015. Sol Phys 295, 173 (2020). https://doi.org/10.1007/s11207-020-01728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01728-7

Keywords

Navigation