Skip to main content
Log in

Evaluation of Electrochromic Device Influenced by Various Formulation of Solid Polymer Electrolyte

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Electrochromic devices (ECDs) using various polymer electrolyte membranes were evaluated in relation to their optical and electrochemical properties. It was found that the composition of polymer matrix markedly influence the transmittance change (ΔT) and stability of ECDs. The electrochromic (WO3) and ion storage (Antimony tin oxide; ATO) layers were fabricated using dry deposition method. Moreover, various types of polymer matrix were used as the electrolyte, i.e., Liquid; PVdF-HFP (UV-0); PEGDMA-PEGMA/PVdF-HFP blended (UV-30); and PEGDMA-PEGMA solid (UV-100) membranes. ECDs using UV-30 exhibited good cyclability, in which the ΔT of 35% was maintained over 200 cycles. Furthermore, as a result of electrochemical analysis, ECD using UV-30 showed charge density of 34.43 mC/cm2 with low charge transfer resistance of 237.7 Ω at the interface between the coloration layer and electrolyte. Therefore, the solid polymer matrix electrolyte (UV-30) improved the electrochromic performance including stability due to excellent ion dissociation and ion mobility in the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Somani, P. R., & Radhakrishnan, S. (2003). Electrochromic materials and devices: Present and future. Materials Chemistry and Physics, 77(1), 117–133. https://doi.org/10.1016/S0254-0584(01)00575-2.

    Article  Google Scholar 

  2. Livage, J., & Ganguli, D. (2001). Sol–gel electrochromic coatings and devices: A review. Solar Energy Materials and Solar Cells, 68(3), 365–381. https://doi.org/10.1016/S0927-0248(00)00369-X.

    Article  Google Scholar 

  3. Meda, L., Breitkopf, R. C., Haas, T. E., & Kirss, R. U. (2002). Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film. Thin Solid Films, 402(1), 126–130. https://doi.org/10.1016/S0040-6090(01)01598-X.

    Article  Google Scholar 

  4. Subrahmanyam, A., & Karuppasamy, A. (2007). Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Solar Energy Materials and Solar Cells, 91(4), 266–274. https://doi.org/10.1016/j.solmat.2006.09.005.

    Article  Google Scholar 

  5. Granqvist, C. G. (2014). Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 564, 1–38. https://doi.org/10.1016/j.tsf.2014.02.002.

    Article  Google Scholar 

  6. Roh, G.-Y., Sung, H.-S., Lee, Y.-C., & Lee, S.-E. (2018). Study on optical characteristics of nano hollow silica with TiO2 shell formation. Journal of the Korean Ceramic Society, 56(1), 98–103. https://doi.org/10.4191/kcers.2019.56.1.10.

    Article  Google Scholar 

  7. Zhang, F.-J., Kong, C., Li, X., Sun, X.-Y., Xie, W.-J., & Oh, W.-C. (2019). Synthesis and characterization of MoS2/graphene-TiO2 ternary photocatalysts for high-efficiency hydrogen production under visible light. Journal of the Korean Ceramic Society, 56(3), 284–290. https://doi.org/10.4191/kcers.2019.56.3.06.

    Article  Google Scholar 

  8. Zhang, J., Tu, J. P., Cai, G. F., Du, G. H., Wang, X. L., & Liu, P. C. (2013). Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template. Electrochimica Acta, 99, 1–8. https://doi.org/10.1016/j.electacta.2013.03.099.

    Article  Google Scholar 

  9. Lee, S. H., Deshpande, R., Parilla, P. A., Jones, K. M., To, B., Mahan, A. H., et al. (2006). Crystalline WO3 nanoparticles for highly improved electrochromic applications. Advanced Materials, 18(6), 763–766. https://doi.org/10.1002/adma.200501953.

    Article  Google Scholar 

  10. Shim, H.-S., Kim, J. W., Sung, Y.-E., & Kim, W. B. (2009). Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Solar Energy Materials and Solar Cells, 93(12), 2062–2068. https://doi.org/10.1016/j.solmat.2009.02.008.

    Article  Google Scholar 

  11. Park, S. Y., Lee, J. M., Noh, C., & Son, S. U. (2009). Colloidal approach for tungsten oxide nanorod-based electrochromic systems with highly improved response times and color efficiencies. Journal of Materials Chemistry, 19(42), 7959–7964. https://doi.org/10.1039/B912430F.

    Article  Google Scholar 

  12. Cai, G. F., Tu, J. P., Zhou, D., Wang, X. L., & Gu, C. D. (2014). Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Solar Energy Materials and Solar Cells, 124, 103–110. https://doi.org/10.1016/j.solmat.2014.01.042.

    Article  Google Scholar 

  13. Liang, L., Zhang, J., Zhou, Y., Xie, J., Zhang, X., Guan, M., et al. (2013). High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO(3)·2H(2)O ultrathin nanosheets. Scientific Reports, 3, 1936. https://doi.org/10.1038/srep01936.

    Article  Google Scholar 

  14. Cai, G., Cui, M., Kumar, V., Darmawan, P., Wang, J., Wang, X., et al. (2016). Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chemical Science, 7(2), 1373–1382. https://doi.org/10.1039/C5SC03727A.

    Article  Google Scholar 

  15. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., & Zhang, J. (2015). A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 44(21), 7484–7539. https://doi.org/10.1039/C5CS00303B.

    Article  Google Scholar 

  16. Thakur, V. K., Ding, G., Ma, J., Lee, P. S., & Lu, X. (2012). Hybrid materials and polymer electrolytes for electrochromic device applications. Advanced Materials, 24(30), 4071–4096. https://doi.org/10.1002/adma.201200213.

    Article  Google Scholar 

  17. Kumar, P., Singh, A. D., Kumar, V., & Kundu, P. P. (2015). Incorporation of nano-Al2O3 within the blend of sulfonated-PVdF-co-HFP and Nafion for high temperature application in DMFCs. RSC Advances, 5(78), 63465–63472. https://doi.org/10.1039/C5RA07992F.

    Article  Google Scholar 

  18. Wu, C.-G., Lu, M.-I., Tsai, C.-C., & Chuang, H.-J. (2006). PVdF-HFP/metal oxide nanocomposites: the matrices for high-conducting, low-leakage porous polymer electrolytes. Journal of Power Sources, 159(1), 295–300. https://doi.org/10.1016/j.jpowsour.2006.04.108.

    Article  Google Scholar 

  19. Wu, C.-G., Lu, M.-I., & Chuang, H.-J. (2005). PVdF-HFP/P123 hybrid with mesopores: a new matrix for high-conducting, low-leakage porous polymer electrolyte. Polymer, 46(16), 5929–5938. https://doi.org/10.1016/j.polymer.2005.05.077.

    Article  Google Scholar 

  20. Ulaganathan, M., Mathew, C. M., & Rajendran, S. (2013). Highly porous lithium-ion conducting solvent-free poly(vinylidene fluoride-co-hexafluoropropylene)/poly(ethyl methacrylate) based polymer blend electrolytes for Li battery applications. Electrochimica Acta, 93, 230–235. https://doi.org/10.1016/j.electacta.2013.01.100.

    Article  Google Scholar 

  21. Song, J. Y., Wang, Y. Y., & Wan, C. C. (2000). Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidene fluoride) A comparison with polypropylene separators. Journal of The Electrochemical Society, 147(9), 3219–3225. https://doi.org/10.1149/1.1393886.

    Article  Google Scholar 

  22. Li, G. C., Zhang, P., Zhang, H. P., Yang, L. C., & Wu, Y. P. (2008). A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process. Electrochemistry Communications, 10(12), 1883–1885. https://doi.org/10.1016/j.elecom.2008.09.035.

    Article  Google Scholar 

  23. Zhu, Y., Yang, Y., Fu, L., & Wu, Y. (2017). A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochimica Acta, 224, 405–411. https://doi.org/10.1016/j.electacta.2016.12.030.

    Article  Google Scholar 

  24. Cao, J.-H., Zhu, B.-K., & Xu, Y.-Y. (2006). Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. Journal of Membrane Science, 281(1), 446–453. https://doi.org/10.1016/j.memsci.2006.04.013.

    Article  Google Scholar 

  25. Ghosh, A., Wang, C., & Kofinas, P. (2010). Block copolymer solid battery electrolyte with high Li–Ion transference number. Journal of the Electrochemical Society, 157(7), A846–A849. https://doi.org/10.1149/1.3428710.

    Article  Google Scholar 

  26. Cheng, C. L., Wan, C. C., & Wang, Y. Y. (2004). Microporous PVdF-HFP based gel polymer electrolytes reinforced by PEGDMA network. Electrochemistry Communications, 6(6), 531–535. https://doi.org/10.1016/j.elecom.2004.04.001.

    Article  Google Scholar 

  27. Lin, S.-Y., Chen, Y.-C., Wang, C.-M., Wen, C.-Y., & Shih, T.-Y. (2012). Study of MoO3–NiO complementary electrochromic devices using a gel polymer electrolyte. Solid State Ionics, 212, 81–87. https://doi.org/10.1016/j.ssi.2012.02.005.

    Article  Google Scholar 

  28. Sim, L. N., Majid, S. R., & Arof, A. K. (2012). Characteristics of PEMA/PVdF-HFP blend polymeric gel films incorporated with lithium triflate salt in electrochromic device. Solid State Ionics, 209–210, 15–23. https://doi.org/10.1016/j.ssi.2011.11.035.

    Article  Google Scholar 

  29. Ding, Y., Zhang, P., Long, Z., Jiang, Y., Xu, F., & Di, W. (2009). The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries. Journal of Membrane Science, 329(1), 56–59. https://doi.org/10.1016/j.memsci.2008.12.024.

    Article  Google Scholar 

  30. Gebreyesus, M. A., Purushotham, Y., & Kumar, J. S. (2016). Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate). Heliyon, 2(7), e00134. https://doi.org/10.1016/j.heliyon.2016.e00134.

    Article  Google Scholar 

  31. Saito, Y., Kataoka, H., Capiglia, C., & Yamamoto, H. (2000). Ionic conduction properties of PVDF−HFP type gel polymer electrolytes with lithium imide salts. The Journal of Physical Chemistry B, 104(9), 2189–2192. https://doi.org/10.1021/jp993723h.

    Article  Google Scholar 

  32. Bella, F., Pugliese, D., Nair, J. R., Sacco, A., Bianco, S., Gerbaldi, C., et al. (2013). A UV-crosslinked polymer electrolyte membrane for quasi-solid dye-sensitized solar cells with excellent efficiency and durability. Physical Chemistry Chemical Physics, 15(11), 3706–3711. https://doi.org/10.1039/C3CP00059A.

    Article  Google Scholar 

  33. McBreen, J., Lee, H., Yang, X., & Sun, X. (1999). New polymer and liquid electrolytes for lithium batteries. Upton: Brookhaven National Lab.

    Google Scholar 

  34. Yang, C.-M., Ju, J. B., Lee, J. K., Cho, W. I., & Cho, B. W. (2005). Electrochemical performances of electric double layer capacitor with UV-cured gel polymer electrolyte based on poly[(ethylene glycol)diacrylate]–poly(vinylidene fluoride) blend. Electrochimica Acta, 50(9), 1813–1819. https://doi.org/10.1016/j.electacta.2004.08.033.

    Article  Google Scholar 

  35. Reiter, J., Krejza, O., & Sedlaříková, M. (2009). Electrochromic devices employing methacrylate-based polymer electrolytes. Solar Energy Materials and Solar Cells, 93(2), 249–255. https://doi.org/10.1016/j.solmat.2008.10.010.

    Article  Google Scholar 

  36. Roerdink, E., & Challa, G. (1978). Influence of tacticity of poly(methyl methacrylate) on the compatibility with poly(vinylidene fluoride). Polymer, 19(2), 173–178. https://doi.org/10.1016/0032-3861(78)90034-4.

    Article  Google Scholar 

  37. Kim, H., Park, Y., Choi, D., Ahn, S.-H., & Lee, C. S. (2016). Novel fabrication of an electrochromic antimony-doped tin oxide film using a nanoparticle deposition system. Applied Surface Science, 377, 370–375. https://doi.org/10.1016/j.apsusc.2016.03.170.

    Article  Google Scholar 

  38. Park, S.-I., Quan, Y.-J., Kim, S.-H., Kim, H., Kim, S., Chun, D.-M., et al. (2016). A review on fabrication processes for electrochromic devices. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 397–421. https://doi.org/10.1007/s40684-016-0049-8.

    Article  Google Scholar 

  39. Choi, D., Lee, M., Kim, H., Chu, W.-S., Chun, D.-M., Ahn, S.-H., et al. (2017). Fabrication of transparent conductive tri-composite film for electrochromic application. Applied Surface Science, 425, 1006–1013. https://doi.org/10.1016/j.apsusc.2017.07.076.

    Article  Google Scholar 

  40. Soboleva, T., Xie, Z., Shi, Z., Tsang, E., Navessin, T., & Holdcroft, S. (2008). Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. Journal of Electroanalytical Chemistry, 622(2), 145–152. https://doi.org/10.1016/j.jelechem.2008.05.017.

    Article  Google Scholar 

  41. Saikia, D., & Kumar, A. (2004). Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO4 polymer gel electrolytes. Electrochimica Acta, 49(16), 2581–2589. https://doi.org/10.1016/j.electacta.2004.01.029.

    Article  Google Scholar 

  42. Zhang, X., Huang, Z., Ma, B., Wen, R., Zhang, M., Huang, Y., et al. (2016). Polyethylene glycol/Cu/SiO2 form stable composite phase change materials: preparation, characterization, and thermal conductivity enhancement. RSC Advances, 6(63), 58740–58748. https://doi.org/10.1039/C6RA12890D.

    Article  Google Scholar 

  43. Leprince, J. G., Palin, W. M., Hadis, M. A., Devaux, J., & Leloup, G. (2013). Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials, 29(2), 139–156. https://doi.org/10.1016/j.dental.2012.11.005.

    Article  Google Scholar 

  44. Yang, M., & Hou, J. (2012). Membranes in lithium ion batteries. Membranes, 2(3), 367.

    Article  Google Scholar 

  45. Saikia, D., Wu, H.-Y., Pan, Y.-C., Lin, C.-P., Huang, K.-P., Chen, K.-N., et al. (2011). Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li–ion batteries. Journal of Power Sources, 196(5), 2826–2834. https://doi.org/10.1016/j.jpowsour.2010.10.096.

    Article  Google Scholar 

  46. Wen, R.-T., Malmgren, S., Granqvist, C. G., & Niklasson, G. A. (2017). Degradation dynamics for electrochromic WO3 films under extended charge insertion and extraction: Unveiling physicochemical mechanisms. ACS Applied Materials and Interfaces, 9(14), 12872–12877. https://doi.org/10.1021/acsami.7b01324.

    Article  Google Scholar 

  47. Choudhury, S., Saha, T., Naskar, K., Stamm, M., Heinrich, G., & Das, A. (2017). A highly stretchable gel-polymer electrolyte for lithium-sulfur batteries. Polymer, 112, 447–456. https://doi.org/10.1016/j.polymer.2017.02.021.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2019R1F1A1060586) and under the framework of international cooperation program managed by the National Research Foundation of Korea (NRF-2020K2A9A2A06071441, FY2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Sunyong Lee.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Son, M., Chun, Dm. et al. Evaluation of Electrochromic Device Influenced by Various Formulation of Solid Polymer Electrolyte. Int. J. Precis. Eng. Manuf. 22, 189–199 (2021). https://doi.org/10.1007/s12541-020-00451-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00451-4

Keywords

Navigation