Skip to main content
Log in

Early Inflationary Phase with Canonical and Noncanonical Scalar Fields: A Symmetry-Based Approach

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study the early inflationary phase of the universe driven by noncanonical scalar field models using an exponential potential. The noncanonical scalar field models are represented by Lagrangian densities containing square and square-root kinetic corrections to the canonical Lagrangian density. We investigate the Lie symmetry of the homogeneous scalar field equations obtained from noncanonical Lagrangian densities and find only a one-parameter Lie point symmetry for both canonical and noncanonical scalar field equations. We use the Lie symmetry generator to obtain an exact analytical group-invariant solution of the homogeneous scalar field equations from an invariant curve condition. The solutions obtained are consistent and satisfy the Friedmann equations subject to constraint conditions on the potential parameter \(\lambda\) for the canonical case and on the parameter \(\mu\) for the noncanonical case. In this scenario, we obtain the values of various inflationary parameters and make useful checks on the observational constraints on the parameters from Planck data by imposing a set of bounds on the parameters \(\lambda\) and \(\mu\). The results for the scalar spectral index (\(n_{S}\)) and the tensor-to-scalar ratio (\(r\)) are presented in the \((n_{S},r)\) plane in the background of Planck-2015 and Planck-2018 data for noncanonical cases and are in good agreement with cosmological observations. For theoretical completeness of the noncanonical models, we verify that the noncanonical models under consideration are free from ghosts and Laplacian instabilities. We also treat the noncanonical scalar field model equations for two power-law (kinetic) corrections by the dynamical system theory. We provide useful checks on the stability of the critical points for both cases and show that the group-invariant analytical noncanonical inflation solutions are stable attractors in phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

REFERENCES

  1. J. Martin, C. Ringeval, and V. Vennin, arXiv: 1303.3787v3.

  2. E. W. Kolb and M. S. Turner, The Early Universe (New York: Addison-Wesley, 1990).

    MATH  Google Scholar 

  3. A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic Publishers, Chur, Switzerland, 1990); arXiv: hep-th/0503203.

  4. A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, 2000).

    Book  MATH  Google Scholar 

  5. D. H. Lyth and A. R. Liddle, The Primordial Density Perturbation (Cambridge University Press, 2009).

    Book  MATH  Google Scholar 

  6. P. A. R. Ade et al., arXiv: 1502.01592.

  7. Planck 2015 results. XX. Constraints on inflation, arxiv: 1502.02114.

  8. Planck 2018 results. X. Constraints on inflation, arXiv: 1807.06211.

  9. M. Bairagi and A. Choudhuri, Eur. Phys. J. Plus 133, 545 (2018).

    Article  Google Scholar 

  10. A. H. Chamseddine, A. Connes, and M. Marcolli, Adv. Theor. Math. Phys. 11, 991 (2007).

    Article  MathSciNet  Google Scholar 

  11. A. Paliathanasis, S. Pan, and S. Pramanik, Class. Quantum Grav. 32, 245006 (2015);

    Article  ADS  Google Scholar 

  12. A. Paliathanasis, S. Pan, and S. Pramanik, Class. Quantum Grav. 32, 245006 (2015); S. Das and E. C. Vagenas, Phys. Rev. Lett. 101, 221301 (2008).

    Article  ADS  Google Scholar 

  13. E. Silverstein and D. Tong, Phys. Rev. D 70, 103505 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Alishahiha, E. Silverstein and D. Tong, Phys. Rev. D 70, 123505 (2004).

    Article  ADS  Google Scholar 

  15. C. Armendariz-Picon, T. Damour, and V. F. Mukhanov, Phys. Lett. B 458, 209 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Gwyn, M. Rummel and A. Westphal, JCAP 12, 010 (2013).

  17. C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. D 63, 103510 (2001).

    Article  ADS  Google Scholar 

  18. S. Weinberg, Cosmology (Oxford University Press Inc., New York, 2008).

    MATH  Google Scholar 

  19. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  20. V. F. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, 2005).

    Book  MATH  Google Scholar 

  21. D. H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).

    Article  ADS  Google Scholar 

  22. J. A. Stein-Schabas, Phys. Rev. D 35, 2345 (1987).

    Article  ADS  Google Scholar 

  23. S. Unnikrishnan, V. Sahni, and A. Toporensky, JCAP 08, 018 (2012).

  24. S. Unnikrishnan and V. Sahni, JCAP 10, 063 (2013).

  25. S. V. Sushkov, Phys. Rev. D 85, 123520 (2012).

    Article  ADS  Google Scholar 

  26. Planck 2015 results. XIII. Cosmological parameters, arxiv:1502.01589.

  27. K. Rezazadeh and K. Karami, JCAP 09, 053 (2015).

  28. S. V. Sushkov, Phys. Rev. D 80, 103505 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  29. E. N. Saridakis and S. V. Sushkov, Phys. Rev. D 81, 083510 (2010).

    Article  ADS  Google Scholar 

  30. S. Sushkov and R. Korolev, Class. Quant. Grav. 29, 085008 (2012).

    Article  ADS  Google Scholar 

  31. M. Gasperini and G. Veneziano, Phys. Rept. 373, 1 (2003).

    Article  ADS  Google Scholar 

  32. F. Piazza and S. Tsujikawa, JCAP 0407, 004 (2004).

  33. S. Tsujikawa and M. Sami, Phys. Lett. B 603, 113 (2004).

    Article  ADS  Google Scholar 

  34. N. Tamanini, Phys. Rev. D 89, 083521 (2014).

    Article  ADS  Google Scholar 

  35. Yi-Fu Cai, J. B. Dent, and D. A. Easson, Phys. Rev. D 83, 101301(R) (2011).

  36. M. Szydlowski, O. Hrycyna and A. Stachowski, IJGMMP 11, 1460012, (2014).

    Google Scholar 

  37. B. Chetry, J. Dutta, and W. Khyllep, Int. J. Mod. Phys. D 28, 1950163 (2019),

    Article  ADS  Google Scholar 

  38. F. Lucchin and S. Matarrese, Phys. Rev. D 32, 1316 (1985).

    Article  ADS  Google Scholar 

  39. L. F. Abbott and M. B. Wise, Nucl. Phys. B244, 541 (1987).

    Article  ADS  Google Scholar 

  40. J. D. Barrow, Phys. Lett. B 235, 40 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  41. J. D. Barrow and A. R. Liddle, Phys. Rev. D 47, 5219 (1993).

    Article  ADS  Google Scholar 

  42. A. Linde, Phys. Rev. D 49, 748 (1994).

    Article  ADS  Google Scholar 

  43. J. J. Halliwell, Phys. Lett. B 185, 341 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  44. J. D. Barrow, Phys. Lett. B 187, 12 (1987).

    Article  ADS  Google Scholar 

  45. P. J. Olver, Applications of Lie Groups to Differential Equations (New York: Springer, 1993); Amitava Choudhuri, Physica Scripta 90, 055004 (2015);

    Article  Google Scholar 

  46. K. Andriopoulos and P. G. L. Leach, Cent. Eur. J. Phys. 6, 469 (2008);

    Google Scholar 

  47. P. J. Olver, Applications of Lie Groups to Differential Equations (New York: Springer, 1993); Amitava Choudhuri, Physica Scripta 90, 055004 (2015); K. Andriopoulos and P. G. L. Leach, Cent. Eur. J. Phys. 6, 469 (2008); Amitava Choudhuri, Nonlinear Evolution Equations: Lagrangian Approach (LAMBERT Academic Publishing, 2011).

    Google Scholar 

  48. H. Stephani, Differential Equations: Their Solution Using Symmetries, Ed. M. MacCallum (CUP, Cambridge, 1990); G.W. Bluman and S. Kumei, Symmetries and Differential Equations (Springer NY, 1989).

  49. X. Chen, M. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).

  50. V. Mukhanov and A. Vikman, JCAP 02, 004 (2006).

  51. D. Blokhinzev, Space and Tme in Micro-World (Nauka, Moscow, 1970, in Russian).

    Google Scholar 

  52. J. Garriga and V. F. Mukhanov, Phys. Lett. B 458, 219 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  53. E. F. Bunn, A. R. Liddle, and M. J. White, Phys. Rev. D 54, R5917 (1996).

    Article  ADS  Google Scholar 

  54. B. A. Bassett et al., Rev. Mod. Phys. 78, 537 (2006).

    Article  ADS  Google Scholar 

  55. U. Seljak et al., Phys. Rev. D 71, 103515 (2005).

    Article  ADS  Google Scholar 

  56. I. Torres, J. C. Fabris, and O. F. Piattella, Phys. Lett. B 798, 135003 (2019).

    Article  MathSciNet  Google Scholar 

  57. A. De Felice and S. Tsujikawac, JCAP 02 007 (2012).

  58. V. Mukhanov and G. Chibisov, JETP Lett. 33, 532 (1981).

    ADS  Google Scholar 

  59. A. A. Starobinsky, JETP Lett. 30, 682 (1979).

    ADS  Google Scholar 

  60. R. H. Brandenberger and A. R. Zhitnitsky, Phys. Rev. D 55, 4640 (1997).

    Article  ADS  Google Scholar 

  61. A. Bedroya and C. Vafa, arXiv: 1909.11063.

  62. A. Bedroya, R. Brandenberger, M. Loverde, and C. Vafa, Phys. Rev. D 101, 103502 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Brahma, Phys. Rev. D 101, 023526 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  64. R. H. Brandenberger and C. Vafa, Nucl. Phys. B 316, 391 (1989);

    Article  ADS  Google Scholar 

  65. R. H. Brandenberger and C. Vafa, Nucl. Phys. B 316, 391 (1989); S. Laliberte and R. H. Brandenberger, arXiv: 1911.00199.

  66. W. L. K. Wu et al., J. Low. Temp. Phys. 184, 765 (2016).

    Article  ADS  Google Scholar 

  67. T. Matsumura et al., J. Low. Temp. Phys. 176, 733 (2014).

    Article  ADS  Google Scholar 

  68. R. Brandenberger and E. Wilson-Ewing, JCAP 03, 047 (2020).

  69. P. Agrawal, G. Obied, P. J. Steinhardt, and C. Vafa, Phys. Lett. B 784, 271 (2018).

    Article  ADS  Google Scholar 

  70. R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).

    Article  ADS  Google Scholar 

  71. J. Maldacena, JHEP 0305, 013 (2003).

  72. F. Oliveri, Symmetry 2, 658 (2010).

    Article  MathSciNet  Google Scholar 

  73. P. E. Hydon, Symmetry Methods for Differential Equations (CUP, Cambridge, 2000).

    Book  MATH  Google Scholar 

  74. K. T. Alligood, T. Sauer, and J. A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer-Verlag, NewYork, 1997).

    Book  MATH  Google Scholar 

  75. A. A. Coley: arXiv: gr-qc/9910074.

  76. J. Matsumoto and S. V. Sushkov, JCAP 01, 040 (2018).

Download references

Funding

AC acknowledges UGC, The Government of India, for financial support through Project no. F.30-302/2016(BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Choudhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairagi, M., Choudhuri, A. Early Inflationary Phase with Canonical and Noncanonical Scalar Fields: A Symmetry-Based Approach. Gravit. Cosmol. 26, 326–350 (2020). https://doi.org/10.1134/S0202289320040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320040027

Navigation