Skip to main content
Log in

Dynamical System Study of Nonminimal Tachyon Field within Holographic Cosmology

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We use the dynamical system method in order to investigate the dynamics of a non-minimally coupled tachyon field within induced gravity on the brane in a holographic cosmological context. Assuming an exponential potential and a monomial form of the nonminimal coupling function, we construct the phase space of the model. Two possible cases, namely, the minimal and nonminimal coupling, are investigated. Using dynamical systems tools, it is found that the model can describe an attractor solution which corresponds to the inflationary era in the non-minimal coupling case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); hep-ph/9905221.

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Maartens and K. Koyama, Living Rev. Rel. 13, 5 (2010); hep-th/1004.3962.

  3. E. D. Stewart, Phys. Rev. D 51, 6847 (1995); hep-ph/9405389.

    Article  ADS  Google Scholar 

  4. G. R. Dvali and S. H. H. Tye, Phys. Lett. B 450,72 (1999); hep-ph/9812483.

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999); hep-th/9906064.

    Article  ADS  MathSciNet  Google Scholar 

  6. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);

    Article  ADS  MathSciNet  Google Scholar 

  7. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); hep-th/9711200.

    Article  Google Scholar 

  8. L. Susskind and E. Witten, “The Holographic bound in anti-de Sitter space”, hep-th/9805114.

  9. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998); hep-th/9802150.

  10. A. Sen, JHEP 9808, 012 (1998); hep-th/9805170.

  11. A. Sen, JHEP 0204, 048 (2002); hep-th/0203211.

  12. A. Sen, Mod. Phys. Lett. A 17, 1797 (2002); hep-th/0204143.

    Article  ADS  Google Scholar 

  13. I. G. Moss and C. Xiong, “Dissipation coefficients for supersymmetric inflatonary models,” hep-ph/0603266.

  14. A. Bargach, F. Bargach and, T. Ouali, Nucl. Phys. B 940, 10 (2019); arXiv: 1805.02942.

  15. R. H. S.Budhi, J. Phys. Conf. Ser. 1127 (1), 012018 (2019).

    Article  Google Scholar 

  16. Z. Y. Tang, Y. C. Ong, B. Wang, and E. Papantonopoulos, Phys. Rev. D 100 (2), 024003 (2019); arXiv: 1901.07310.

  17. K. Nozari and N. Rashidi, Phys. Rev. D 88 (2), 023519 (2013); arXiv: 1306.5853.

    Article  ADS  Google Scholar 

  18. N. D. Jerin Mohan, P. B. Krishna, A. Sasidharan, and T. K. Mathew, Class. Quant. Grav. 37, 075007 (2020).

    Article  ADS  Google Scholar 

  19. S. Pal, S. Mishra and S. Chakraborty, Int. J. Mod. Phys. D 28 (15), 1950173 (2019).

    Article  ADS  Google Scholar 

  20. S. Pal and S. Chakraborty, Gen. Rel. Grav. 51 (9), 124 (2019).

    Article  ADS  Google Scholar 

  21. A. Ravanpak and G. F. Fadakar, PoS ICHEP 2018, 736 (2019).

    Google Scholar 

  22. S. Carloni, P. K. S. Dunsby, S. Capozziello, and A. Troisi, Class. Quantum Grav. 22, 4839 (2005); gr-qc/0410046.

  23. I. Quiros, T. Gonzalez, D. Gonzalez, and Y. Napoles, Class. Quantum Grav. 27, 215021 (2010); arXiv: 0906.2617.

  24. D. Escobar, C. R. Fadragas, G. Leon, and Y. Leyva, Astrophys. Space Sci. 349, 575 (2014); arXiv: 1301.2570.

    Article  ADS  Google Scholar 

  25. W. Fang, H. Tu, J. Huang, and C. Shu, Eur. Phys. J. C 76 (2016); arXiv: 1402.4045.

  26. O. Hrycyna and M. Szydłowski, JCAP 1511 (2015); arXiv: 1506.03429.

  27. C. G. Boehmer, N. Chan, and R. Lazkoz, Phys. Lett. B 714, 11 (2012); arXiv: 1111.6247.

    Article  ADS  Google Scholar 

  28. M. Bouhmadi-López, J. Marto, J. Morais, and C. M. Silva, JCAP 1703 (2017); arXiv: 1611.03100.

  29. C. Xu, E. N. Saridakis and G. Leon, JCAP 07, 005 (2012); arXiv: 1202.3781.

  30. E. Kiritsis, JCAP 0510, 014 (2005); hep-th/0504219.

  31. J. E. Lidsey and D. Seery, Phys. Rev. D 73, 023516 (2006); astro-ph/0511160.

    Article  ADS  Google Scholar 

  32. M. Bouhmadi-Lopez and D. Wands, Phys. Rev. D 71, 024010 (2005); hep-th/0408061.

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Halliwell, Phys.Lett. B185, 341 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Burd and J. D. Barrow, Nucl. Phys. B 308, 929–945 (1988).

    Article  ADS  Google Scholar 

  35. M. M. Guterman and Z. H. Nitecki, Differential Equations: A First Course (3rd ed., Saunders, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farida Bargach, Aatifa Bargach or Taoufik Ouali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bargach, F., Bargach, A. & Ouali, T. Dynamical System Study of Nonminimal Tachyon Field within Holographic Cosmology. Gravit. Cosmol. 26, 379–386 (2020). https://doi.org/10.1134/S0202289320040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320040039

Navigation